Atjaunināt sīkdatņu piekrišanu

E-grāmata: $S$-Modules in the Category of Schemes

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 79,19 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This paper gives a theory $S$-modules for Morel and Voevodsky's category of algebraic spectra over an arbitrary field $k$. This is a 'point-set' category of spectra which are commutative, associative and unital with respect to the smash product. In particular, $E{\infty}$-ring spectra are commutative monoids in this category. Our approach is similar to that of 7. We start by constructing a category of coordinate-free algebraic spectra, which are indexed on an universe, which is an infinite-dimensional affine space. One issue which arises here, different from the topological case, is that the universe does not come with an inner product. We overcome this difficulty by defining algebraic spectra to be indexed on the subspaces of the universe with finite codimensions instead of finite dimensions, and show that this is equivalent to spectra indexed on the integers.Using the linear injections operad, we also define universe change functors, as well as other important constructions analogous to those in topology, such as the twisted half-smash product. Based on this category of coordinate-free algebraic spectra, we define the category of $S$-modules. In the homotopical part of the paper, we give closed model structures to these categories of algebraic spectra, and show that the resulting homotopy categories are equivalent to Morel and Voevodsky's algebraic stable homotopy category.
Introduction Preliminaries Coordinate-free spectra Coordinatized
prespectra Comparison with coordinatized spectra The stable simplicial model
structure The $\mathbb{A}^1$-local model structure Characterization of
$\mathbb{A}^1$-weak equivalences Change of universe The space of linear
injections preserving finite subspaces Twisted half-smash products and
twisted function spectra The category of $\mathbb{L}$-spectra Unital
properties of $\mathbb{L}$-spectra The category of $S$-modules $S$-algebras
and their modules Proofs of the model structure theorems Technical results on
the extended injections operad Appendix: Small objects in the category of
simplicial sheaves Bibliography.