Atjaunināt sīkdatņu piekrišanu

2-Dimensional Categories [Mīkstie vāki]

(Associate Professor of Mathematics, Ohio State University), (Professor of Mathematics, Ohio State University)
  • Formāts: Paperback / softback, 640 pages, height x width x depth: 31x157x234 mm, weight: 105 g
  • Izdošanas datums: 31-Jan-2021
  • Izdevniecība: Oxford University Press
  • ISBN-10: 0198871384
  • ISBN-13: 9780198871385
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 79,42 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 640 pages, height x width x depth: 31x157x234 mm, weight: 105 g
  • Izdošanas datums: 31-Jan-2021
  • Izdevniecība: Oxford University Press
  • ISBN-10: 0198871384
  • ISBN-13: 9780198871385
Citas grāmatas par šo tēmu:
Category theory emerged in the 1940s in the work of Samuel Eilenberg and Saunders Mac Lane. It describes relationships between mathematical structures. Outside of pure mathematics, category theory is an important tool in physics, computer science, linguistics, and a quickly-growing list of other sciences. This book is about 2-dimensional categories, which add an extra dimension of richness and complexity to category theory.

2-Dimensional Categories is an introduction to 2-categories and bicategories, assuming only the most elementary aspects of category theory. A review of basic category theory is followed by a systematic discussion of 2-/bicategories, pasting diagrams, lax functors, 2-/bilimits, the Duskin nerve, 2-nerve, internal adjunctions, monads in bicategories, 2-monads, biequivalences, the Bicategorical Yoneda Lemma, and the Coherence Theorem for bicategories. Grothendieck fibrations and the Grothendieck construction are discussed next, followed by tricategories, monoidal bicategories, the Gray tensor product, and double categories. Completely detailed proofs of several fundamental but hard-to-find results are presented for the first time. With exercises and plenty of motivation and explanation, this book is useful for both beginners and experts.

Recenzijas

This provides a highly useful resource for research mathematicians in various areas and graduate students alike. A clear benefit of this book is that often the data of a general definition are spelled out in detail. * Robert Laugwitz, Mathematical Reviews Clippings * This is a long-waited introduction to 2-categories and bicategories * Hirokazu Nishimura, zbMATH Open *

1 Categories
1(34)
1.1 Basic Category Theory
1(10)
1.2 Monoidal Categories
11(12)
1.3 Enriched Categories
23(7)
1.4 Exercises and Notes
30(5)
2 Bicategories and 2-Categories
35(64)
2.1 Bicategories
35(15)
2.2 Unity Properties
50(4)
2.3 2-Categories
54(10)
2.4 2-Category of Multicategories
64(13)
2.5 2-Category of Polycategories
77(9)
2.6 Dualities
86(5)
2.7 Exercises and Notes
91(8)
3 Pasting Diagrams
99(48)
3.1 Examples of 2-Categorical Pastings
100(3)
3.2 Pasting Schemes
103(8)
3.3 2-Categorical Pasting Theorem
111(5)
3.4 Composition Schemes
116(10)
3.5 Composition Scheme Extensions
126(5)
3.6 Bicategorical Pasting Theorem
131(7)
3.7 String Diagrams
138(4)
3.8 Exercises and Notes
142(5)
4 Functors, Transformations, and Modifications
147(56)
4.1 Lax Functors
147(17)
4.2 Lax Transformations
164(8)
4.3 Oplax Transformations
172(5)
4.4 Modifications
177(7)
4.5 Representables
184(6)
4.6 Icons
190(8)
4.7 Exercises and Notes
198(5)
5 Bicategorical Limits and Nerves
203(38)
5.1 Bilimits
203(13)
5.2 Bicolimits
216(5)
5.3 2-Limits
221(7)
5.4 Duskin Nerves
228(8)
5.5 2-Nerves
236(3)
5.6 Exercises and Notes
239(2)
6 Adjunctions and Monads
241(34)
6.1 Internal Adjunctions
242(9)
6.2 Internal Equivalences
251(5)
6.3 Duality for Modules over Rings
256(4)
6.4 Monads
260(5)
6.5 2-Monads
265(4)
6.6 Exercises and Notes
269(6)
7 The Whitehead Theorem for Bicategories
275(30)
7.1 The Lax Slice Bicategory
276(5)
7.2 Lax Terminal Objects in Lax Slices
281(5)
7.3 Quillen Theorem A for Bicategories
286(10)
7.4 The Whitehead Theorem for Bicategories
296(1)
7.5 Quillen Theorem A and The Whitehead Theorem for 2-Categories
297(3)
7.6 Exercises and Notes
300(5)
8 The Yoneda Lemma and Coherence
305(26)
8.1 The 1-Categorical Yoneda Lemma
306(2)
8.2 The Bicategorical Yoneda Pseudofunctor
308(7)
8.3 The Bicategorical Yoneda Lemma
315(13)
8.4 The Coherence Theorem
328(1)
8.5 Exercises and Notes
328(3)
9 Grothendieck Fibrations
331(40)
9.1 Cartesian Morphisms and Fibrations
331(11)
9.2 A 2-Monad for Fibrations
342(7)
9.3 From Pseudo Algebras to Fibrations
349(7)
9.4 From Fibrations to Pseudo Algebras
356(8)
9.5 Fibrations are Pseudo Algebras
364(4)
9.6 Exercises and Notes
368(3)
10 The Grothendieck Construction
371(68)
10.1 From Pseudofunctors to Fibrations
372(7)
10.2 As a Lax Colimit
379(7)
10.3 As a 2-Functor
386(14)
10.4 From Fibrations to Pseudofunctors
400(10)
10.5 1-Fully Faithfulness
410(14)
10.6 As a 2-Equivalence
424(6)
10.7 Bicategorical Grothendieck Construction
430(7)
10.8 Exercises and Notes
437(2)
11 The Tricategory of Bicategories
439(74)
11.1 Whiskerings of Transformations
440(5)
11.2 Tricategories
445(15)
11.3 Composites of Transformations and Modifications
460(19)
11.4 Composition for Bicategories
479(6)
11.5 The Associator
485(13)
11.6 The Other Structures
498(12)
11.7 Exercises and Notes
510(3)
12 Further 2-Dimensional Categorical Structures
513(62)
12.1 Braided, Sylleptic, and Symmetric Monoidal Bicategories
513(19)
12.2 The Gray Tensor Product
532(23)
12.3 Double Categories
555(9)
12.4 Monoidal Double Categories
564(3)
12.5 Exercises and Notes
567(8)
Bibliography 575(8)
List of Main Facts 583(10)
List of Notations 593(8)
Index 601
Niles Johnson is an Associate Professor of Mathematics at The Ohio State University at Newark. He obtained his PhD at University of Chicago and held a post-doctoral position at the University of Georgia. His research focuses on algebraic topology.



Donald Yau is a Professor of Mathematics at The Ohio State University at Newark. He obtained his PhD at MIT and held a post-doctoral position at the University of Illinois at Urbana-Champaign. His research focuses on algebraic topology. He has published 7 books and over 40 research articles.