Atjaunināt sīkdatņu piekrišanu

3-Manifold Groups Are Virtually Residually p [Mīkstie vāki]

  • Formāts: Paperback / softback, 100 pages, weight: 171 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 01-Sep-2013
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821888013
  • ISBN-13: 9780821888018
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 85,93 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 100 pages, weight: 171 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 01-Sep-2013
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821888013
  • ISBN-13: 9780821888018
Citas grāmatas par šo tēmu:
Given a prime $p$, a group is called residually $p$ if the intersection of its $p$-power index normal subgroups is trivial. A group is called virtually residually $p$ if it has a finite index subgroup which is residually $p$. It is well-known that finitely generated linear groups over fields of characteristic zero are virtually residually $p$ for all but finitely many $p$. In particular, fundamental groups of hyperbolic $3$-manifolds are virtually residually $p$. It is also well-known that fundamental groups of $3$-manifolds are residually finite. In this paper the authors prove a common generalisation of these results: every $3$-manifold group is virtually residually $p$ for all but finitely many $p$. This gives evidence for the conjecture (Thurston) that fundamental groups of $3$-manifolds are linear groups.
Introduction Preliminaries Embedding theorems for $p$-Groups Residual
properties of graphs of groups Proof of the main results The case of graph
manifolds Bibliography Index
Matthias Aschenbrenner, University of California, Los Angeles, CA, USA

Stefan Friedl, University of Koln, Germany