Atjaunināt sīkdatņu piekrišanu

E-grāmata: 5 Steps to a 5: AP Calculus BC 2022

  • Formāts: 464 pages
  • Izdošanas datums: 04-Aug-2021
  • Izdevniecība: McGraw-Hill Education
  • Valoda: eng
  • ISBN-13: 9781264267453
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 18,03 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 464 pages
  • Izdošanas datums: 04-Aug-2021
  • Izdevniecība: McGraw-Hill Education
  • Valoda: eng
  • ISBN-13: 9781264267453
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

MATCHES THE LATEST EXAM!
Let us supplement your AP classroom experience with this easy-to-follow study guide.


The immensely popular 5 Steps to a 5: AP Calculus BC guide has been updated for the 2021-22 school year and now contains:

  • 3 full-length practice exams that reflect the latest exam
  • Comprehensive overview of the AP Calculus BC exam format
  • Cumulative review sections at the end of each chapter that offers a continuous practice building on previously-covered material
  • Hundreds of practice exercises with thorough answer explanations
  • An appendix of common formulas and theorems frequently tested in the AP Calculus BC exam
  • AP-style scoring guidelines for free-response practice questions
  • Proven strategies specific to each section of the test

Dedication and Acknowledgments xii
Preface xiii
About the Authors xiv
Introduction: The Five-Step Program xv
STEP 1 Set Up Your Study Plan
1 What You Need to Know About the AP Calculus BC Exam
3(5)
1.1 What Is Covered on the AP Calculus BC Exam?
4(1)
1.2 What Is the Format of the AP Calculus BC Exam?
4(1)
1.3 What Are the Advanced Placement Exam Grades?
5(1)
How Is the AP Calculus BC Exam Grade Calculated?
5(1)
1.4 Which Graphing Calculators Are Allowed for the Exam?
6(2)
Calculators and Other Devices Not Allowed for the AP Calculus BC Exam
7(1)
Other Restrictions on Calculators
7(1)
2 How to Plan Your Time
8(9)
2.1 Three Approaches to Preparing for the AP Calculus BC Exam
8(2)
Overview of the Three Plans
8(2)
2.2 Calendar for Each Plan
10(7)
Summary of the Three Study Plans
13(4)
STEP 2 Determine Your Test Readiness
3 Take a Diagnostic Exam
17(24)
3.1 Getting Started!
21(1)
3.2 Diagnostic Test
21(6)
3.3 Answers to Diagnostic Test
27(1)
3.4 Solutions to Diagnostic Test
28(10)
3.5 Calculate Your Score
38(3)
Short-Answer Questions
38(1)
AP Calculus BC Diagnostic Exam
38(3)
STEP 3 Develop Strategies for Success
4 How to Approach Each Question Type
41(8)
4.1 The Multiple-Choice Questions
42(1)
4.2 The Free-Response Questions
42(1)
4.3 Using a Graphing Calculator
43(1)
4.4 Taking the Exam
44(5)
What Do I Need to Bring to the Exam?
44(1)
Tips for Taking the Exam
45(4)
STEP 4 Review the Knowledge You Need to Score High
Big Idea 1 Limits
5 Limits and Continuity
49(26)
5.1 The Limit of a Function
50(7)
Definition and Properties of Limits
50(1)
Evaluating Limits
50(2)
One-Sided Limits
52(3)
Squeeze Theorem
55(2)
5.2 Limits Involving Infinities
57(7)
Infinite Limits (as x → a)
57(2)
Limits at Infinity (as x → ±∞)
59(2)
Horizontal and Vertical Asymptotes
61(3)
5.3 Continuity of a Function
64(3)
Continuity of a Function at a Number
64(1)
Continuity of a Function over an Interval
64(1)
Theorems on Continuity
64(3)
5.4 Rapid Review
67(2)
5.5 Practice Problems
69(1)
5.6 Cumulative Review Problems
70(1)
5.7 Solutions to Practice Problems
70(3)
5.8 Solutions to Cumulative Review Problems
73(2)
Big Idea 2 Derivatives
6 Differentiation
75(28)
6.1 Derivatives of Algebraic Functions
76(6)
Definition of the Derivative of a Function
76(3)
Power Rule
79(1)
The Sum, Difference, Product, and Quotient Rules
80(1)
The Chain Rule
81(1)
6.2 Derivatives of Trigonometric, Inverse Trigonometric, Exponential, and Logarithmic Functions
82(5)
Derivatives of Trigonometric Functions
82(2)
Derivatives of Inverse Trigonometric Functions
84(1)
Derivatives of Exponential and Logarithmic Functions
85(2)
6.3 Implicit Differentiation
87(3)
Procedure for Implicit Differentiation
87(3)
6.4 Approximating a Derivative
90(2)
6.5 Derivatives of Inverse Functions
92(2)
6.6 Higher Order Derivatives
94(1)
L'Hopital's Rule for Indeterminate Forms
95(1)
6.7 Rapid Review
95(2)
6.8 Practice Problems
97(1)
6.9 Cumulative Review Problems
98(1)
6.10 Solutions to Practice Problems
98(3)
6.11 Solutions to Cumulative Review Problems
101(2)
7 Graphs of Functions and Derivatives
103(46)
7.1 Rolle's Theorem, Mean Value Theorem, and Extreme Value Theorem
103(5)
Rolle's Theorem
104(1)
Mean Value Theorem
104(3)
Extreme Value Theorem
107(1)
7.2 Determining the Behavior of Functions
108(12)
Test for Increasing and Decreasing Functions
108(3)
First Derivative Test and Second Derivative Test for Relative Extrema
111(3)
Test for Concavity and Points of Inflection
114(6)
7.3 Sketching the Graphs of Functions
120(3)
Graphing without Calculators
120(1)
Graphing with Calculators
121(2)
7.4 Graphs of Derivatives
123(5)
7.5 Parametric, Polar, and Vector Representations
128(5)
Parametric Curves
128(1)
Polar Equations
129(1)
Types of Polar Graphs
129(1)
Symmetry of Polar Graphs
130(1)
Vectors
131(1)
Vector Arithmetic
132(1)
7.6 Rapid Review
133(4)
7.7 Practice Problems
137(2)
7.8 Cumulative Review Problems
139(1)
7.9 Solutions to Practice Problems
140(7)
7.10 Solutions to Cumulative Review Problems
147(2)
8 Applications of Derivatives
149(25)
8.1 Related Rate
149(6)
General Procedure for Solving Related Rate Problems
149(1)
Common Related Rate Problems
150(1)
Inverted Cone (Water Tank) Problem
151(1)
Shadow Problem
152(1)
Angle of Elevation Problem
153(2)
8.2 Applied Maximum and Minimum Problems
155(5)
General Procedure for Solving Applied Maximum and Minimum Problems
155(1)
Distance Problem
155(1)
Area and Volume Problem
156(3)
Business Problems
159(1)
8.3 Rapid Review
160(1)
8.4 Practice Problems
161(2)
8.5 Cumulative Review Problems
163(1)
8.6 Solutions to Practice Problems
164(7)
8.7 Solutions to Cumulative Review Problems
171(3)
9 More Applications of Derivatives
174(33)
9.1 Tangent and Normal Lines
174(9)
Tangent Lines
174(6)
Normal Lines
180(3)
9.2 Linear Approximations
183(3)
Tangent Line Approximation (or Linear Approximation)
183(2)
Estimating the nth Root of a Number
185(1)
Estimating the Value of a Trigonometric Function of an Angle
185(1)
9.3 Motion Along a Line
186(4)
Instantaneous Velocity and Acceleration
186(2)
Vertical Motion
188(1)
Horizontal Motion
188(2)
9.4 Parametric, Polar, and Vector Derivatives
190(5)
Derivatives of Parametric Equations
190(1)
Position, Speed, and Acceleration
191(1)
Derivatives of Polar Equations
191(1)
Velocity and Acceleration of Vector Functions
192(3)
9.5 Rapid Review
195(1)
9.6 Practice Problems
196(2)
9.7 Cumulative Review Problems
198(1)
9.8 Solutions to Practice Problems
199(5)
9.9 Solutions to Cumulative Review Problems
204(3)
Big Idea 3 Integrals and the Fundamental Theorems of Calculus
10 Integration
207(24)
10.1 Evaluating Basic Integrals
208(5)
Antiderivatives and Integration Formulas
208(2)
Evaluating Integrals
210(3)
10.2 Integration by U-Substitution
213(8)
The U-Substitution Method
213(1)
U-Substitution and Algebraic Functions
213(2)
U-Substitution and Trigonometric Functions
215(1)
U-Substitution and Inverse Trigonometric Functions
216(2)
U-Substitution and Logarithmic and Exponential Functions
218(3)
10.3 Techniques of Integration
221(2)
Integration by Parts
221(1)
Integration by Partial Fractions
222(1)
10.4 Rapid Review
223(1)
10.5 Practice Problems
224(1)
10.6 Cumulative Review Problems
225(1)
10.7 Solutions to Practice Problems
226(3)
10.8 Solutions to Cumulative Review Problems
229(2)
11 Definite Integrals
231(26)
11.1 Riemann Sums and Definite Integrals
232(5)
Sigma Notation or Summation Notation
232(1)
Definition of a Riemann Sum
233(1)
Definition of a Definite Integral
234(1)
Properties of Definite Integrals
235(2)
11.2 Fundamental Theorems of Calculus
237(4)
First Fundamental Theorem of Calculus
237(1)
Second Fundamental Theorem of Calculus
238(3)
11.3 Evaluating Definite Integrals
241(5)
Definite Integrals Involving Algebraic Functions
241(1)
Definite Integrals Involving Absolute Value
242(1)
Definite Integrals Involving Trigonometric, Logarithmic, and Exponential Functions
243(2)
Definite Integrals Involving Odd and Even Functions
245(1)
11.4 Improper Integrals
246(2)
Infinite Intervals of Integration
246(1)
Infinite Discontinuities
247(1)
11.5 Rapid Review
248(1)
11.6 Practice Problems
249(1)
11.7 Cumulative Review Problems
250(1)
11.8 Solutions to Practice Problems
251(3)
11.9 Solutions to Cumulative Review Problems
254(3)
12 Areas, Volumes, and Arc Lengths
257(52)
12.1 The Function F(x) = ∫xa f(t)dt
258(4)
12.2 Approximating the Area Under a Curve
262(5)
Rectangular Approximations
262(4)
Trapezoidal Approximations
266(1)
12.3 Area and Definite Integrals
267(9)
Area Under a Curve
267(5)
Area Between Two Curves
272(4)
12.4 Volumes and Definite Integrals
276(13)
Solids with Known Cross Sections
276(4)
The Disc Method
280(5)
The Washer Method
285(4)
12.5 Integration of Parametric, Polar, and Vector Curves
289(3)
Area, Arc Length, and Surface Area for Parametric Curves
289(1)
Area and Arc Length for Polar Curves
290(1)
Integration of a Vector-Valued Function
291(1)
12.6 Rapid Review
292(3)
12.7 Practice Problems
295(1)
12.8 Cumulative Review Problems
296(1)
12.9 Solutions to Practice Problems
297(8)
12.10 Solutions to Cumulative Review Problems
305(4)
13 More Applications of Definite Integrals
309(37)
13.1 Average Value of a Function
310(3)
Mean Value Theorem for Integrals
310(1)
Average Value of a Function on [ a, b]
311(2)
13.2 Distance Traveled Problems
313(3)
13.3 Definite Integral as Accumulated Change
316(3)
Business Problems
316(1)
Temperature Problem
317(1)
Leakage Problem
318(1)
Growth Problem
318(1)
13.4 Differential Equations
319(5)
Exponential Growth/Decay Problems
319(2)
Separable Differential Equations
321(3)
13.5 Slope Fields
324(4)
13.6 Logistic Differential Equations
328(2)
13.7 Euler's Method
330(2)
Approximating Solutions of Differential Equations by Euler's Method
330(2)
13.8 Rapid Review
332(2)
13.9 Practice Problems
334(2)
13.10 Cumulative Review Problems
336(1)
13.11 Solutions to Practice Problems
337(6)
13.12 Solutions to Cumulative Review Problems
343(3)
Big Idea 4 Series
14 Series
346(27)
14.1 Sequences and Series
347(1)
Convergence
347(1)
14.2 Types of Series
348(2)
P-Series
348(1)
Harmonic Series
348(1)
Geometric Series
348(1)
Decimal Expansion
349(1)
14.3 Convergence Tests
350(4)
Divergence Test
350(1)
Integral Test
350(1)
Ratio Test
351(1)
Comparison Test
352(1)
Limit Comparison Test
352(1)
Informal Principle
353(1)
14.4 Alternating Series
354(3)
Error Bound
354(1)
Absolute and Conditional Convergence
355(2)
14.5 Power Series
357(1)
Radius and Interval of Convergence
357(1)
14.6 Taylor Series
358(1)
Taylor Series and MacLaurin Series
358(1)
Common MacLaurin Series
359(1)
14.7 Operations on Series
359(3)
Substitution
359(1)
Differentiation and Integration
360(1)
Error Bounds
361(1)
14.8 Rapid Review
362(2)
14.9 Practice Problems
364(1)
14.10 Cumulative Review Problems
365(1)
14.11 Solutions to Practice Problems
365(4)
14.12 Solutions to Cumulative Review Problems
369(4)
STEP 5 Build Your Test-Taking Confidence
AP Calculus BC Practice Exam 1
373(30)
AP Calculus BC Practice Exam 2
403(30)
Formulas and Theorems
433(8)
Bibliography 441(2)
Websites 443
McGraw-Hill authors represent the leading experts in their fields and are dedicated to improving the lives, careers, and interests of readers worldwide