Atjaunināt sīkdatņu piekrišanu

5G Technology: 3GPP New Radio [Hardback]

Edited by (Nokia, Finland), Edited by , Edited by (Nokia, Finland)
  • Formāts: Hardback, 536 pages, height x width x depth: 244x170x33 mm, weight: 1111 g
  • Izdošanas datums: 26-Dec-2019
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1119236312
  • ISBN-13: 9781119236313
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 111,00 €*
  • * Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena
  • Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena.
  • Daudzums:
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 536 pages, height x width x depth: 244x170x33 mm, weight: 1111 g
  • Izdošanas datums: 26-Dec-2019
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1119236312
  • ISBN-13: 9781119236313
Citas grāmatas par šo tēmu:

A comprehensive guide to 5G technology, applications and potential for the future

5G brings new technology solutions to the 5G mobile networks including new spectrum options, new antenna structures, new physical layer and protocols designs and new network architectures. 5G Technology: 3GPP New Radio is a comprehensive resource that offers explanations of 5G specifications, performance evaluations, aspects of device design, practical deployment considerations and illustrative examples from field experiences.

With contributions from a panel of international experts on the topic, the book presents the main new technology components in 5G and describes the physical layer, radio protocols and network performance. The authors review the deployment aspects such as site density and transport network and explore the 5G performance aspects including data rates and coverage and latency. The book also contains illustrative examples of practical field measurement. In addition, the book includes the most recent developments in 4G LTE evolution and offers an outlook for the future of the evolution of 5G. This important book:

  • Offers an introduction to 5G technology and its applications
  • Contains contributions from international experts on the topic
  • Reviews the main technology components in 5G
  • Includes information on the optimisation of the Internet of things
  • Presents illustrative examples of practical field measurements

Written for students and scientists interested in 5G technology, 5G Technology: 3GPP New Radio provides a clear understanding of the underlying 5G technology that promotes the opportunity to take full benefit of new capabilities.

List of Contributors xvii
Foreword xix
Preface xxi
Acknowledgment xxiii
1 Introduction 1(12)
Harri HoIma
Antti Toskala
Takehiro Nakamura
Tommi Uitto
1.1 Introduction
1(2)
1.2 5G Targets
3(1)
1.3 5G Technology Components
3(1)
1.4 5G Spectrum
4(1)
1.5 5G Capabilities
5(2)
1.6 5G Capacity Boost
7(1)
1.7 5G Standardization and Schedule
8(1)
1.8 5G Use Cases
9(1)
1.9 Evolution Path from LTE to 5G
10(1)
1.10 Mobile Data Traffic Growth
10(1)
1.11 Summary
11(1)
Reference
11(2)
2 5G Targets and Standardization 13(14)
Hiroyuki Atarashi
Mikio Iwamura
Satoshi Nagata
Takehiro Nakamura
Antti Toskala
2.1 Introduction
13(1)
2.2 ITU
13(4)
2.2.1 IMT Vision for 2020 and Beyond
14(1)
2.2.2 Standardization of IMT-2020 Radio Interface Technologies
15(2)
2.3 NGMN
17(5)
2.3.1 NGMN 5G Use Cases
18(1)
2.3.2 NGMN 5G Requirements
19(1)
2.3.3 NGMN 5G Architecture Design Principles
20(1)
2.3.4 Spectrum, Intellectual Property Rights (IPR), and Further Recommendations by NGMN
21(1)
2.4 3GPP Schedule and Phasing
22(3)
References
25(2)
3 Technology Components 27(22)
Harri Holma
3.1 Introduction
27(1)
3.2 Spectrum Utilization
27(4)
3.2.1 Frequency Bands
27(2)
3.2.2 Bandwidth Options
29(1)
3.2.3 Spectrum Occupancy
29(1)
3.2.4 Control Channel Flexibility
30(1)
3.2.5 Dynamic Spectrum Sharing
31(1)
3.3 Beamforming
31(2)
3.4 Flexible Physical Layer and Protocols
33(11)
3.4.1 Flexible Numerology
33(1)
3.4.2 Short Transmission Time and Mini-slot
34(1)
3.4.3 Self-Contained Subframe
35(1)
3.4.4 Asynchronous HARQ
36(1)
3.4.5 Lean Carrier
37(1)
3.4.6 Adaptive Reference Signals
38(1)
3.4.7 Adaptive UE Specific Bandwidth
38(1)
3.4.8 Distributed MIMO
39(1)
3.4.9 Waveforms
39(2)
3.4.10 Channel Coding
41(1)
3.4.11 Pipeline Processing and Front-Loaded Reference Signals
41(1)
3.4.12 Connected Inactive State
41(2)
3.4.13 Grant-Free Access
43(1)
3.4.14 Cell Radius of 300 km
43(1)
3.5 Network Slicing
44(1)
3.6 Dual Connectivity with LTE
44(2)
3.7 Radio Cloud and Edge Computing
46(1)
3.8 Summary
47(1)
Reference
47(2)
4 Spectrum 49(18)
Harri Holma
Takehiro Nakamura
4.1 Introduction
49(3)
4.2 Millimeter Wave Spectrum Above 20 GHz
52(3)
4.3 Mid-Band Spectrum at 3.3-5.0 GHz and at 2.6 GHz
55(3)
4.4 Low-Band Spectrum Below 3 GHz
58(1)
4.5 Unlicensed Band
59(3)
4.6 Shared Band
62(2)
4.7 3GPP Frequency Variants
64(1)
4.8 Summary
64(1)
References
64(3)
5 5G Architecture 67(20)
Antti Toskala
Miikka Poikselka
5.1 Introduction
67(1)
5.2 5G Architecture Options
67(3)
5.3 5G Core Network Architecture
70(5)
5.3.1 Access and Mobility Management Function
72(1)
5.3.2 Session Management Function
73(1)
5.3.3 User Plane Function
73(1)
5.3.4 Data Storage Architecture
73(1)
5.3.5 Policy Control Function
73(1)
5.3.6 Network Exposure Function
74(1)
5.3.7 Network Repository Function
74(1)
5.3.8 Network Slice Selection
74(1)
5.3.9 Non-3GPP Interworking Function
74(1)
5.3.10 Auxiliary 5G Core Functions
74(1)
5.4 5G RAN Architecture
75(6)
5.4.1 NG-Interface
78(1)
5.4.2 Xn-Interface
79(1)
5.4.3 E1-Interface
80(1)
5.4.4 F1-Interface
80(1)
5.5 Network Slicing
81(4)
5.5.1 Interworking with LTE
82(3)
5.6 Summary
85(1)
References
86(1)
6 5G Physical Layer 87(62)
Mihai Enescu
Keeth Jayasinghe
Karri Ranta-Aho
Karol Schober
Antti Toskala
6.1 Introduction
87(1)
6.2 5G Multiple Access Principle
88(4)
6.3 Physical Channels and Signals
92(3)
6.4 Basic Structures for 5G Frame Structure
95(3)
6.5 5G Channel Structures and Beamforming Basics
98(2)
6.6 Random Access
100(1)
6.7 Downlink User Data Transmission
101(2)
6.8 Uplink User Data Transmission
103(2)
6.9 Uplink Signaling Transmission
105(3)
6.10 Downlink Signaling Transmission
108(3)
6.11 Physical Layer Procedures
111(2)
6.11.1 HARQ Procedure
112(1)
6.11.2 Uplink Power Control
112(1)
6.11.3 Timing Advance
113(1)
6.12 5G MIMO and Beamforming Operation
113(20)
6.12.1 Downlink MIMO Transmission Schemes
113(1)
6.12.2 Beam Management Framework
114(8)
6.12.2.1 Initial Beam Acquisition
116(1)
6.12.2.2 Beam Measurement and Reporting
116(1)
6.12.2.3 Beam Indication: QCL and Transmission Configuration Indicator (TCI)
117(3)
6.12.2.4 Beam Recovery
120(2)
6.12.3 CSI Framework
122(4)
6.12.3.1 Reporting Settings
122(1)
6.12.3.2 Resource Settings
122(1)
6.12.3.3 Reporting Configurations
123(2)
6.12.3.4 Report Quantity Configurations
125(1)
6.12.4 CSI Components
126(6)
6.12.4.1 Channel Quality Indicator (CQI)
126(1)
6.12.4.2 Precoding Matrix Indicator (PMI)
126(6)
6.12.4.3 Resource Indicators: CRI, SSBRI, RI, LI
132(1)
6.12.5 Uplink MIMO Transmission Schemes
132(1)
6.12.5.1 Codebook-Based Uplink Transmission
132(1)
6.12.5.2 Non-Codebook-Based Uplink Transmission
133(1)
6.13 Channel Coding with 5G
133(9)
6.13.1 Channel Coding for Data Channel
134(6)
6.13.1.1 5G LDPC Code Design
135(2)
6.13.1.2 5G LDPC Coding Chain
137(3)
6.13.2 Channel Coding for Control Channels
140(11)
6.13.2.1 5G Polar Coding Design
140(2)
6.14 Dual Connectivity
142(2)
6.15 5G Data Rates
144(1)
6.16 Physical Layer Measurements
145(1)
6.17 UE Capability
146(1)
6.18 Summary
147(1)
References
148(1)
7 5G Radio Protocols 149(38)
Tero Henttonen
Jarkko Koskela
Benoist Sebire
Antti Toskala
7.1 Introduction
149(1)
7.2 5G Radio Protocol Layers
150(1)
7.3 SDAP
151(5)
7.3.1 Overview
151(2)
7.3.2 QoS Flow Remapping
153(2)
7.3.3 MDBV
155(1)
7.3.4 Header
155(1)
7.4 PDCP
156(4)
7.4.1 Overview
156(1)
7.4.2 Reordering
156(1)
7.4.3 Security
157(1)
7.4.4 Header Compression
157(1)
7.4.5 Duplicates and Status Reports
158(1)
7.4.6 Duplication
159(1)
7.5 RLC
160(2)
7.5.1 Overview
160(1)
7.5.2 Segmentation
160(1)
7.5.3 Error Correction
161(1)
7.5.4 Transmissions Modes
161(1)
7.5.5 Duplication
161(1)
7.6 MAC Layer
162(6)
7.6.1 Overview
162(1)
7.6.2 Logical Channels
162(1)
7.6.3 Random Access Procedure
163(1)
7.6.4 HARQ and Transmissions
163(1)
7.6.5 Scheduling Request
164(1)
7.6.6 Logical Channel Prioritization and Multiplexing
164(1)
7.6.7 BSR
165(1)
7.6.8 PHR
166(1)
7.6.9 DRX
166(1)
7.6.10 Bandwidth Parts
166(1)
7.6.11 BFD and Recovery
167(1)
7.6.12 Other Functions
167(1)
7.6.13 MAC PDU Structure
168(1)
7.7 The RRC Protocol
168(17)
7.7.1 Overview
168(3)
7.7.2 Broadcast of System Information
171(3)
7.7.2.1 Validity and Change of System Information
173(1)
7.7.3 Paging
174(1)
7.7.4 Overview of Idle and Inactive Mode Mobility
175(4)
7.7.4.1 Cell Selection and Reselection Process
176(1)
7.7.4.2 Intra-frequency and Equal-Priority Reselections
177(1)
7.7.4.3 Inter-Frequency/RAT Reselections
178(1)
7.7.4.4 Cell Selection and Reselection Measurements
178(1)
7.7.4.5 Reselection Evaluation Altered by UE Mobility
178(1)
7.7.5 RRC Connection Control and Mobility
179(4)
7.7.5.1 RRC Connection Control
179(2)
7.7.5.2 RRC Connection Setup from IDLE and INACTIVE
181(1)
7.7.5.3 Mobility and Measurements in Connected Mode
182(1)
7.7.6 RRC Support of Upper Layers
183(1)
7.7.6.1 NAS Message Transfer
183(1)
7.7.6.2 Network Slicing
183(1)
7.7.6.3 UE Capability Transfer
184(1)
7.7.7 Different Versions of Release 15 RRC Specifications
184(1)
7.8 Radio Protocols in RAN Architecture
185(1)
7.9 Summary
185(1)
References
186(1)
8 Deployment Aspects 187(26)
Harri Holma
Riku Luostari
Jussi Reunanen
Puripong Thepchatri
8.1 Introduction
187(1)
8.2 Spectrum Resources
188(2)
8.2.1 Spectrum Refarming and Dynamic Spectrum Sharing
188(2)
8.3 Network Density
190(1)
8.4 Mobile Data Traffic Growth
190(2)
8.4.1 Mobile Data Volume
190(1)
8.4.2 Traffic Asymmetry
191(1)
8.5 Base Station Site Solutions
192(2)
8.6 Electromagnetic Field (EMF) Considerations
194(1)
8.7 Network Synchronization and Coordination Requirements
195(14)
8.7.1 Main Interference Scenarios in TDD System
196(1)
8.7.2 TDD Frame Configuration Options
197(1)
8.7.3 Cell Size and Random Access Channel
197(1)
8.7.4 Guard Period and Safety Zone
198(1)
8.7.5 Intra-Frequency Operation
199(2)
8.7.6 Inter-Operator Synchronization
201(1)
8.7.7 Synchronization Requirements in 3GPP
202(2)
8.7.7.1 Cell Phase Synchronization Accuracy
203(1)
8.7.7.2 Maximum Receive Timing Difference (MRTD) for LTE-5G Dual Connectivity
203(1)
8.7.8 Synchronization from Global Navigation Satellite System (GNSS)
204(1)
8.7.9 Synchronization with ToP
205(3)
8.7.10 Timing Alignment Between Vendors
208(1)
8.8 5G Overlay with Another Vendor LTE
209(1)
8.9 Summary
210(1)
References
211(2)
9 Transport 213(26)
Esa Markus Metsala
Juha Salmelin
9.1 5G Transport Network
213(6)
9.1.1 5G Transport
213(1)
9.1.2 Types of 5G Transport
214(1)
9.1.3 Own versus Leased Transport
215(1)
9.1.4 Common Transport
216(1)
9.1.5 Mobile Backhaul Tiers
216(2)
9.1.6 Logical and Physical Transport Topology
218(1)
9.1.7 Standards Viewpoint
218(1)
9.2 Capacity and Latency
219(6)
9.2.1 Transport Capacity Upgrades
219(1)
9.2.2 Access Link
220(1)
9.2.3 Distribution Tier
221(1)
9.2.4 Backhaul and High Layer Fronthaul Capacity
221(1)
9.2.5 Low Layer Fronthaul Capacity
222(1)
9.2.6 Latency
223(1)
9.2.7 QoS Marking
224(1)
9.3 Technologies
225(3)
9.3.1 Client Ports
225(1)
9.3.2 Networking Technologies Overview
226(2)
9.4 Fronthaul and Backhaul Interfaces
228(4)
9.4.1 Low Layer Fronthaul
228(2)
9.4.1.1 Network Solutions
229(1)
9.4.1.2 Security
230(1)
9.4.2 NG Interface
230(1)
9.4.2.1 Connectivity
230(1)
9.4.2.2 Security
231(1)
9.4.3 Xn/X2 Interfaces
231(1)
9.4.3.1 Connectivity
231(1)
9.4.3.2 Security
231(1)
9.4.3.3 Dual Connectivity
231(1)
9.4.4 F1 Interface
231(1)
9.4.4.1 Security on F1
232(1)
9.5 Specific Topics
232(4)
9.5.1 Network Slicing in Transport
232(1)
9.5.2 URLLC Transport
233(1)
9.5.2.1 Latency
233(1)
9.5.2.2 Reliability
233(1)
9.5.3 IAB (Integrated Access and Backhaul)
234(1)
9.5.4 NTNs (Non-Terrestrial Networks)
234(1)
9.5.5 Time-Sensitive Networks
235(1)
References
236(3)
10 5G Performance 239(66)
Harri Holma
Suresh Kalyanasundaram
Venkat Venkatesan
10.1 Introduction
239(2)
10.2 Peak Data Rates
241(2)
10.3 Practical Data Rates
243(4)
10.3.1 User Data Rates at 2.5-5.0 GHz
243(1)
10.3.2 User Data Rates at 28 GHz
244(1)
10.3.3 User Data Rates with Fixed Wireless Access at 28 GHz
245(2)
10.4 Latency
247(10)
10.4.1 User Plane Latency
247(6)
10.4.2 Low Latency Architecture
253(2)
10.4.3 Control Plane Latency
255(2)
10.5 Link Budgets
257(5)
10.5.1 Link Budget for Sub-6-GHz TDD
257(3)
10.5.2 Link Budget for Low Band FDD
260(1)
10.5.3 Link Budget for Millimeter Waves
260(2)
10.6 Coverage for Sub-6-GHz Band
262(7)
10.6.1 Signal Propagation at 3.5 GHz Band
262(1)
10.6.2 Beamforming Antenna Gain
262(2)
10.6.3 Uplink Coverage Solutions
264(5)
10.6.3.1 Low Band LTE with Dual Connectivity
264(2)
10.6.3.2 Low Band 5G with Carrier Aggregation
266(1)
10.6.3.3 Supplemental Uplink
266(2)
10.6.3.4 Benchmarking of Uplink Solutions
268(1)
10.7 Massive MIMO and Beamforming Algorithms
269(11)
10.7.1 Antenna Configuration
269(2)
10.7.2 Beamforming Algorithms
271(4)
10.7.2.1 Grid of Beams and User-Specific Beams
271(2)
10.7.2.2 Zero Forcing
273(1)
10.7.2.3 Hybrid Beamforming
274(1)
10.7.3 Radio Network Architecture and Functionality Split
275(2)
10.7.4 RF Solution Benchmarking
277(1)
10.7.5 Distributed MIMO
278(2)
10.8 Packet Scheduling Algorithms
280(6)
10.8.1 Low Latency Scheduling
280(5)
10.8.2 Mini-Slot Scheduling
285(1)
10.9 Spectral Efficiency and Capacity
286(5)
10.9.1 Downlink Spectral Efficiency in 5G Compared to LTE
286(2)
10.9.2 Downlink Spectral Efficiency with Different Antenna Configurations
288(1)
10.9.3 Uplink Spectral Efficiency
288(1)
10.9.4 IMT-2020 Performance Evaluation
289(2)
10.9.5 5G Capacity at Mid-Band
291(1)
10.10 Network Energy Efficiency
291(3)
10.11 Traffic and Device Density
294(2)
10.12 Ultra-Reliability for Mission-Critical Communication
296(3)
10.12.1 Antenna Diversity
296(1)
10.12.2 Macro-Diversity and Multi-Connectivity
296(1)
10.12.3 Interference Cancelation
297(1)
10.12.4 HARQ (Hybrid Automatic Repeat Request) for High Reliability
297(2)
10.13 Mobility and High-Speed Trains
299(3)
10.14 Summary
302(1)
References
302(3)
11 Measurements 305(44)
Yoshihisa Kishiyama
Tesoro Imai
11.1 Introduction
305(1)
11.2 Propagation Measurements Above 6 GHz
306(20)
11.2.1 Fundamental Experiments
306(6)
11.2.1.1 Path Loss in Open Space
306(1)
11.2.1.2 Building Corner Diffraction Loss
307(1)
11.2.1.3 Building Penetration Loss
307(1)
11.2.1.4 Scattering Effect on Rough Surface
308(1)
11.2.1.5 Human Blockage Effects
309(3)
11.2.2 Urban Microcellular Scenario
312(3)
11.2.2.1 Measurement of Path Loss
312(2)
11.2.2.2 Measurement of Channel Model Parameters
314(1)
11.2.3 Indoor Hotspot Scenario
315(4)
11.2.3.1 Measurement of Path Loss
315(1)
11.2.3.2 Measurement of Channel Model Parameters
316(3)
11.2.4 Outdoor-to-Indoor Scenario
319(7)
11.2.4.1 Measurement of Path Loss
319(4)
11.2.4.2 Measurement of Channel Model Parameters
323(3)
11.3 Field Experiments with Sub-6-GHz 5G Radio
326(6)
11.3.1 Experimental System with Higher Rank MIMO
326(2)
11.3.2 Field Experiments
328(4)
11.3.2.1 Field Experiment in a Shopping Mall Environment
329(1)
11.3.2.2 Field Experiment in a Long Corridor Environment
330(2)
11.4 Field Experiments of Millimeter Wave 5G Radio
332(12)
11.4.1 Experimental System with Beamforming and Beam Tracking
332(4)
11.4.2 Field Experiments
336(14)
11.4.2.1 Field Experiment in a Courtyard Environment
336(2)
11.4.2.2 Field Experiment in a Shopping Mall Environment
338(3)
11.4.2.3 Field Experiment in a Street Canyon Environment
341(3)
11.5 Summary
344(1)
References
345(4)
12 5G RF Design Challenges 349(50)
Petri Vasenkari
Dominique Brunel
Laurent Noel
12.1 Introduction
349(1)
12.2 Impact of New Physical Layer on RF Performance
350(13)
12.2.1 New Uplink Waveforms
350(2)
12.2.2 New Frequency Range Definition
352(2)
12.2.2.1 5G Operating Band Numbering Scheme
353(1)
12.2.3 Impact of NSA Operation on the 5G UE RF Front-End
354(4)
12.2.4 New Features Impacting UE RF Front-End
358(3)
12.2.4.1 Impact of Beam Forming in FR2
358(1)
12.2.4.2 Impact of UL MIMO Operation
358(3)
12.2.4.3 Impact of Sounding Reference Signal (SRS) Switching as Enhancement to Downlink MIMO
361(1)
12.2.5 RAN4 Technical Specification (TS) Survival Guide
361(2)
12.3 5G Standalone Performance Aspects in Frequency Range 1
363(10)
12.3.1 New Channel Bandwidths and Improved SU
363(2)
12.3.2 Impact of Large Channel Bandwidths on PA Efficiency Enhancement Techniques
365(1)
12.3.3 FR1 Frequency Bands
366(3)
12.3.3.1 Impact of Extended Channel Bandwidth on MSD in Refarmed Bands
366(3)
12.3.4 Transmitter Chain Aspects
369(4)
12.3.4.1 Maximum Power Reduction and Inner/Outer Allocation Concept
369(2)
12.3.4.2 Impact on Power Amplifier Power Consumption
371(1)
12.3.4.3 MPR for Almost Contiguous Allocations and PI/2 BPSK Power Boosting
371(2)
12.4 5G Standalone Performance Aspects in mmWave Frequency Range 2
373(8)
12.4.1 Channel Bandwidths and SU
373(1)
12.4.2 FR2 Bands
373(1)
12.4.3 FR2 Key RF Parameters
374(2)
12.4.4 Transmitter Aspects
376(2)
12.4.4.1 Power and Device Classes
376(1)
12.4.4.2 ACLR vs. FR1
376(1)
12.4.4.3 MPR and A-MPR
377(1)
12.4.4.4 Impact on FR2 Relaxed ACLR Requirements on MPR Gating Factor
377(1)
12.4.5 Multi-Band Support and Carrier Aggregation
378(1)
12.4.6 OTA Conformance Test Challenges
378(3)
12.5 Dual Uplink Performance Challenges for NSA Operation
381(11)
12.5.1 From Single UL to Dual UL Operation
381(2)
12.5.2 EN-DC: Explosion of LTE-CA Combinations as Baseline to 5G
383(1)
12.5.3 FR1 UE Types and Power Sharing in EN-DC
383(1)
12.5.4 Dual Uplink Challenges for EN-DC Operation in FR1
383(8)
12.5.4.1 Intra-Band Challenges
385(1)
12.5.4.2 Inter-Band Challenges
385(3)
12.5.4.3 Example of MSD/A-MPR/MPR Challenge with DC_(n)71AA
388(3)
12.5.5 Dual Uplink Challenges for EN-DC and NN-DC Operation in FR2
391(1)
12.6 Examples of UE Implementation Challenges
392(4)
12.6.1 More Antennas, More Bands to Multiplex, and More Concurrency
392(3)
12.6.2 FR2 Antenna Integration and Smartphone Design
395(1)
12.7 Summary
396(1)
References
397(2)
13 5G Modem Design Challenges 399(32)
YihShen Chen
Jiann-Ching Guey
Chienhwa Hwang
PeiKai Liao
Guillaume Sebire
Weide Wu
Weidong Yang
13.1 Introduction
399(2)
13.2 High Data Rate, System Flexibility, and Computational Complexity
401(5)
13.2.1 Channel Coding Aspects Versus UE Complexity
401(3)
13.2.2 MIMO and Network Flexibility Versus UE Complexity
404(2)
13.3 Low Latency, Flexible Timing, and Modem Control Flow Complexity
406(7)
13.3.1 Low Latency Aspects Versus Modem Processing Capability
407(4)
13.3.1.1 Shorter Slot Duration
408(1)
13.3.1.2 Mini-Slot Transmission
408(1)
13.3.1.3 Multiple PDCCH Monitoring Occasions Per Slot
409(1)
13.3.1.4 Shorter PDSCH/PUSCH Processing Time
410(1)
13.3.1.5 Preemption Indication
410(1)
13.3.1.6 Front-Loaded DMRS
411(1)
13.3.1.7 OFDM Symbol-Based PUCCH
411(1)
13.3.2 System Flexibility Versus Modem Control Timing
411(2)
13.3.2.1 Flexible Slot Format Indication
412(1)
13.3.2.2 Flexible Scheduling
413(1)
13.4 Multi-RAT Coexistence and Modem Architecture
413(6)
13.4.1 Dual Connectivity and Modem Architecture
414(2)
13.4.2 Impact of LTE/NR Coexistence on Modem Design
416(2)
13.4.2.1 Operating in the New NR Band
416(1)
13.4.2.2 Supplementary Uplink
416(1)
13.4.2.3 Carrier Aggregation
417(1)
13.4.2.4 Operating in the Legacy LTE Band
418(1)
13.4.3 Uplink Transmission Design for Minimizing Intermodulation Effect
418(1)
13.5 Wider Bandwidth Operation and Modem Power Consumption
419(9)
13.5.1 Modem Power Consumption in Daily Use
419(3)
13.5.2 Reducing Modem Power Consumption by Bandwidth Adaptation
422(4)
13.5.3 Impacts on Modem Design
426(2)
13.6 Summary
428(1)
References
429(2)
14 Internet of Things Optimization 431(30)
Harri Holma
Rapeepat Ratasuk
Mads Lauridsen
14.1 Introduction
431(2)
14.2 IoT Optimization in LTE Radio
433(3)
14.3 LTE-M
436(3)
14.4 Narrowband-IoT
439(3)
14.5 IoT Optimization in LTE Core Network
442(1)
14.6 Coverage
443(1)
14.7 Delay and Capacity
444(2)
14.8 Power Saving Features
446(2)
14.9 NB-IoT Power Consumption Measurements
448(1)
14.10 IoT Solution Benchmarking
449(2)
14.11 loT Optimizations in 5G
451(7)
14.12 Summary
458(1)
References
459(2)
15 5G Phase 2 and Beyond 461(16)
Antti Toskala
15.1 Introduction
461(1)
15.2 3GPP Release 16 Timing and Key Themes
461(14)
15.2.1 5G Unlicensed (5G-U)
462(2)
15.2.2 Industrial IoT and URLLC Enhancements
464(2)
15.2.3 Toward Dynamic TDD
466(1)
15.2.4 Integrated Access and Backhaul
467(2)
15.2.5 Mobility Enhancements
469(1)
15.2.6 MIMO Enhancements
470(1)
15.2.7 Multi-Radio Dual Connectivity Enhancements
470(1)
15.2.8 Two-Step RACH
471(1)
15.2.9 UE Power Consumption Reduction
471(1)
15.2.10 Lightweight Mobile Broadband with NR-Light
472(1)
15.2.11 5G V2X
473(1)
15.2.12 New 5G Core Features in Release 16
474(1)
15.3 Summary and Outlook for Release 17
475(1)
References
476(1)
16 LTE-Advanced Evolution 477(24)
Hard Holma
Timo Lunttila
16.1 Introduction
477(1)
16.2 Overview of LTE Evolution
478(3)
16.3 LTE-Advanced Pro Technologies
481(13)
16.3.1 Multi-Gbps Data Rates with Carrier Aggregation Evolution
481(1)
16.3.2 Utilization of 5 GHz Unlicensed Band
482(3)
16.3.3 Enhanced Spectral Efficiency with 3D Beamforming and Interference Cancelation
485(2)
16.3.4 Extreme Local Capacity with Ultra-Dense Network
487(1)
16.3.5 Millisecond Latency with Shorter Transmission Time Interval
487(3)
16.3.6 loT Optimization
490(1)
16.3.7 D2D Communications
490(2)
16.3.8 Public Safety
492(2)
16.4 5G and LTE Benchmarking
494(4)
16.4.1 Peak Data Rate
495(1)
16.4.2 Cell Edge Data Rate
495(1)
16.4.3 Spectral Efficiency
496(1)
16.4.4 Mobility
496(1)
16.4.5 Traffic Density
497(1)
16.4.6 Device Density
497(1)
16.5 Summary
498(1)
References
499(2)
Index 501
HARRI HOLMA, Fellow, Nokia Bell Labs, Finland. Harri Holma has edited seven books about 3G and 4G technologies since 2001. Dr Holma is working with Nokia Bell Labs with main interest in radio systems and mobile technologies.



ANTTI TOSKALA, Head of 3GPP Radio Standardization, Nokia Bell Labs, Finland.??Antti Toskala's group was responsible for the standardization of WCDMA physical layer, High Speed Downlink Packet Access (HSDPA) and for the start of uplink packet data evolution (HSUPA). As part of the 2010 LTE World Summit LTE Awards, he received the "Award for Individual Contribution for LTE Development" recognizing his contribution to both LTE standardization and LTE knowledge spreading in the industry.

TAKEHIRO NAKAMURA, VP and Managing Director of the 5G Laboratories in NTT DOCOMO, Inc., Japan. Mr Nakamura joined NTT Laboratories in 1990. He has been engaged in the standardization activities for the WCDMA, HSPA, LTE/LTE-Advanced and 5G at ARIB in Japan since 1997. He has been the leader of 2020 and Beyond Ad Hoc (20B AH) in ARIB since October 2013.