Atjaunināt sīkdatņu piekrišanu

6G: The Next Horizon: From Connected People and Things to Connected Intelligence [Hardback]

Edited by , Edited by
  • Formāts: Hardback, 490 pages, height x width x depth: 250x175x27 mm, weight: 1090 g, Worked examples or Exercises
  • Izdošanas datums: 06-May-2021
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1108839320
  • ISBN-13: 9781108839327
  • Hardback
  • Cena: 109,33 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 490 pages, height x width x depth: 250x175x27 mm, weight: 1090 g, Worked examples or Exercises
  • Izdošanas datums: 06-May-2021
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1108839320
  • ISBN-13: 9781108839327
The first book on 6G wireless presents an overall vision for 6G - an era of intelligence-of-everything - with drivers, key capabilities, use cases, KPIs, and the technology innovations that will shape it. These innovations include immersive human-centric communication, sensing, localization, and imaging, connected machine learning and networked AI, Industry 4.0 and beyond with connected intelligence, smart cities and life, and the satellite mega-constellation for 3D full-Earth wireless coverage. Also covered are new air-interface and networking technologies, integrated sensing and communications, and integrated terrestrial and non-terrestrial networks. In addition, novel network architectures to enable network AI, user centric networks, native trustworthiness are discussed. Essential reading for researchers in academia and industry working on B5G wireless communications.

Papildus informācija

The first book on 6G covers vision, divers, key capabilities, use cases, KPIs, enabling technologies and research directions.
List of Contributors
xiv
Preface xix
List of Abbreviations
xxi
Part I Introduction
1(30)
1 Mobile Communications Towards 2030 And Beyond
3(28)
1.1 Evolution of Mobile Communications
3(2)
1.2 Key Drivers
5(6)
1.3 Overall Vision
11(15)
1.3.1 Key Technology Trends
15(6)
1.3.2 Typical Use Cases
21(3)
1.3.3 Target KPIs
24(2)
1.4 Structure of the Book
26(2)
References
28(3)
Part II Use Cases and Target KPIs
31(60)
Introduction to Part II
33(1)
2 Extremely Immersive Human-Centric Experience
34(13)
2.1 Ultimate Immersive Cloud VR
34(6)
2.1.1 Transmission Latency Requirements
35(3)
2.1.2 Throughput Requirements
38(1)
2.1.3 Summary of Main Requirements for Ultimate VR
39(1)
2.2 Haptic and Multi-Sensory Communication
40(3)
2.2.1 Teleoperation in Highly Dynamic Environments
41(1)
2.2.2 Main Requirements for Highly Dynamic Teleoperation
42(1)
2.3 Glass-Free 3D and Holographic Displays
43(3)
2.3.1 Background of Glass-Free 3D Displays
43(1)
2.3.2 Glass-Free 3D Image Reconstruction Techniques
44(1)
2.3.3 Resolution and Latency Requirements
45(1)
2.3.4 Main Requirements for Glass-Free 3D Displays
45(1)
References
46(1)
3 Sensing, Localization, And Imaging
47(14)
3.1 High-Accuracy Localization
47(4)
3.1.1 Absolute Localization
49(1)
3.1.2 Relative Localization
49(1)
3.1.3 Semantic Localization
50(1)
3.2 Simultaneous Imaging, Mapping, and Localization
51(3)
3.2.1 Simultaneous Localization and Mapping
52(1)
3.2.2 Indoor Imaging and Mapping
52(1)
3.2.3 Outdoor Imaging and Mapping
53(1)
3.3 Augmented Human Sensing
54(3)
3.3.1 Seeing Beyond the Eye - Ultra-High Resolution
55(1)
3.3.2 Seeing Beyond the Eye - Making the Invisible Visible
55(1)
3.3.3 Seeing Beyond the Eye - Spectrogram Recognition
56(1)
3.4 Gesture and Activity Recognition
57(3)
3.4.1 Contactless Control - Macro Recognition
58(1)
3.4.2 Contactless Control - Micro Recognition
59(1)
References
60(1)
4 Full-Capability Industry 4.0 And Beyond
61(7)
4.1 Factory of the Future
62(2)
4.2 Motion Control
64(1)
4.3 Collaborative Robots in a Group
64(1)
4.4 From Intelligent Cobots to Cyborgs
65(2)
References
67(1)
5 Smart City And Smart Life
68(7)
5.1 Smart Transportation
68(2)
5.2 Smart Building
70(1)
5.3 Smart Healthcare
71(1)
5.4 Smart Services Enabled by UAV
72(2)
References
74(1)
6 Global Coverage For Mobile Services
75(7)
6.1 Broadband Wireless Access for the Unconnected
75(4)
6.1.1 Mobile Broadband for the Unconnected
76(1)
6.1.2 Broadband Connection on the Move
77(1)
6.1.3 First Responder Communication and Disaster Relief
78(1)
6.2 Wide-Ranging IoT Services Extended to Unconnected Locations
79(1)
6.3 High-Precision Positioning and Navigation
79(1)
6.4 Real-Time Earth Observation and Protection
80(1)
References
81(1)
7 Connected Machine Learning And Networked Al
82(9)
7.1 AI-Enhanced 6G Services and Operations
83(2)
7.1.1 AI-Enhanced 6G Network Performance
83(1)
7.1.2 AI-Enhanced Network Operations
84(1)
7.2 6G-Enabled AI Services
85(2)
7.2.1 6G for Collaborative Intelligence and Real-Time Control
85(1)
7.2.2 6G for Large-Scale Intelligence
86(1)
References
87(2)
Summary of Part II
89(2)
Part III Theoretical Foundations
91(52)
Introduction to Part III
93(2)
8 Theoretical Foundations For Native Al And Machine Learning
95(17)
8.1 Fundamental AI Theory
95(7)
8.1.1 Definitions
95(2)
8.1.2 Machine Learning Taxonomy
97(2)
8.1.3 Information Theoretic Principle of DNN
99(2)
8.1.4 DNN Implementations
101(1)
8.2 Distributed AI Theory
102(3)
8.3 Dynamic Bayesian Network Theory
105(5)
References
110(2)
9 Theoretical Foundations For Massive Capacity And Connectivity
112(13)
9.1 Electromagnetic Information Theory
112(4)
9.2 Large-Scale Communication Theory
116(5)
References
121(4)
10 Theoretical Foundations For Future Machine Type Communications
125(9)
10.1 Semantic Communication Theory
125(4)
10.2 Super-Resolution Theory
129(3)
References
132(2)
11 Theoretical Foundations For Energy-Efficient Systems
134(9)
11.1 Energy-Efficient Communication and Computation Theory
134(2)
11.2 Green AI Theory
136(2)
References
138(2)
Summary of Part III
140(3)
Part IV New Elements
143(76)
Introduction to Part IV
145(1)
12 New Spectrum
146(12)
12.1 Global Spectrum Allocation of 5G up to 2020
147(1)
12.2 6G Spectrum Requirements
148(1)
12.3 Mid-Bands Remain the Most Cost-Effective Way for Wide Coverage
149(3)
12.4 Millimeter Wave Bands Become Mature in the 6G Era
152(2)
12.5 THz Bands Open New Possibilities for Sensing and Communication
154(3)
References
157(1)
13 New Channels
158(10)
13.1 New Requirements of 6G Channel Modeling
159(2)
13.2 Channel Measurement in 6G
161(5)
13.2.1 Channel Measurement in New Spectrum
161(3)
13.2.2 Channel Measurement in New Scenarios
164(2)
References
166(2)
14 New Materials
168(8)
14.1 Silicon Advancement
168(1)
14.2 Heterogeneous IH-V Material Platform
169(1)
14.3 Reconfigurable Material
170(1)
14.4 Photonic Crystal
171(1)
14.5 Photovoltaics Material and Photodetector
171(1)
14.6 Plasmonic Material
172(1)
References
173(3)
15 New Antennas
176(8)
15.1 Photoconductive Lens Antenna
177(1)
15.2 Reflectarray and Transmitarray
177(1)
15.3 Metasurfaces
178(2)
15.4 Nano-Photodetectors
180(1)
15.5 Antenna-on-Chip and Antenna-in-Package
180(1)
15.6 Orbital Angular Momentum
181(1)
References
182(2)
16 Thz Technology
184(17)
16.1 THz Components
184(7)
16.1.1 Electronic Approach
185(4)
16.1.2 Hybrid and Photonic Approaches
189(2)
16.2 THz Systems
191(2)
16.2.1 THz Communication Systems
191(1)
16.2.2 THz Imaging and Sensing Systems
192(1)
16.3 Challenges
193(1)
References
194(7)
17 Post Moore's Law Computing
201(7)
17.1 Post Moore's Law Era
201(1)
17.2 Neuromorphic Computing
202(2)
17.3 Quantum Computing
204(1)
17.4 New Computing Architectures
205(2)
References
207(1)
18 New Devices
208(11)
18.1 Future Mobile Devices
208(5)
18.2 Future Brain and Device Interface
213(2)
18.3 New Wearable
215(1)
References
216(2)
Summary of Part IV
218(1)
Part V Enabling Technologies for 6G Air Interface Design
219(142)
Introduction to Part V
221(4)
19 Intelligent Air Interface Framework
225(16)
19.1 Background and Motivations
225(1)
19.2 Overview of Existing Technologies
226(3)
19.2.1 Spectrum Utilization and Energy Efficiency in NR
226(1)
19.2.2 AI/ML for the PHY Layer
227(1)
19.2.3 AI/ML for the MAC Layer
228(1)
19.3 New Design Expectations and Potential Research Directions
229(9)
19.3.1 AI-Enabled Personalized Air Interface
230(6)
19.3.2 E2E AI-Based Link Design and Open Problems
236(2)
References
238(3)
20 Integrated Terrestrial And Non-Terrestrial Communication
241(13)
20.1 Background and Motivations
241(1)
20.2 Overview of Existing Solutions
242(3)
20.3 New Design Expectations and Potential Research Directions
245(7)
20.3.1 Integrated Multi-Layer Network
245(4)
20.3.2 Enhanced Non-Terrestrial Communications
249(3)
References
252(2)
21 Integrated Sensing And Communication
254(17)
21.1 Background and Motivations
254(1)
21.2 Overview of Existing Solutions
255(3)
21.3 New Design Expectations and Potential Research Directions
258(10)
21.3.1 System Design Aspects for Integrated Sensing and Communications
258(6)
21.3.2 RF Sensing Design and Algorithms
264(4)
References
268(3)
22 New Waveforms And Modulation Schemes
271(18)
22.1 Background and Motivation
271(1)
22.2 Overview of Existing Solutions
272(10)
22.2.1 Multi-Carrier Waveforms
273(5)
22.2.2 Single-Carrier Waveforms
278(2)
22.2.3 Modulation Schemes
280(1)
22.2.4 Sensing Waveforms
281(1)
22.3 New Design Expectations and Potential Research Directions
282(3)
References
285(4)
23 New Coding
289(20)
23.1 Background and Motivations
289(1)
23.2 Channel Coding Schemes
290(7)
23.2.1 Background
290(1)
23.2.2 Target KPIs of 6G Channel Coding
291(2)
23.2.3 6G Channel Coding Design Principles
293(4)
23.3 Joint Source and Channel Coding
297(4)
23.3.1 Research Background
297(1)
23.3.2 JSCC Based on ML
298(2)
23.3.3 6G JSCC Design Principles
300(1)
23.4 PHY Network Coding
301(3)
23.4.1 Background
301(2)
23.4.2 6G PHY Network Coding Design Principles
303(1)
References
304(5)
24 New Multiple Access
309(16)
24.1 Background and Motivations
309(1)
24.2 Overview of Existing Solutions
310(9)
24.2.1 Orthogonal Multiple Access
310(2)
24.2.2 Non-Orthogonal Multiple Access
312(5)
24.2.3 Grant-Free MA
317(2)
24.3 New Design Expectations and Potential Research Directions
319(3)
24.3.1 MA for Large-Capacity URLLC Services
319(1)
24.3.2 MA for Extremely Low-Cost and Low-Power Devices
320(1)
24.3.3 MA for Super-Massive Connectivity
321(1)
24.3.4 MA for Robust Beamforming
321(1)
24.3.5 MA with AI Assistance
322(1)
References
322(3)
25 Ultra-Massive Mimo
325(28)
25.1 Background and Motivations
325(1)
25.2 Overview of Existing Solutions
325(5)
25.2.1 MIMO Technologies for FR1
326(1)
25.2.2 MIMO Support for FR2
327(1)
25.2.3 Cooperative MIMO
328(2)
25.3 Emerging MIMO Technologies
330(9)
25.3.1 THz MIMO
330(2)
25.3.2 Reconfigurable Intelligent Surfaces
332(1)
25.3.3 Extremely Large Aperture Arrays
333(1)
25.3.4 AI-Assisted MIMO
334(2)
25.3.5 Other Potential MIMO Technologies
336(3)
25.4 New Design Expectations and Potential Research Directions
339(7)
25.4.1 Sensing-Assisted MIMO
340(1)
25.4.2 Controllable Radio Channel and Topology
341(1)
25.4.3 MIMO at FR2 and THz
342(2)
25.4.4 Extremely Large Aperture Arrays
344(1)
25.4.5 AI-Enabled MIMO
344(2)
References
346(7)
26 Integrated Super-Sidelink And Access Link Communication
353(8)
26.1 Background and Motivations
353(2)
26.2 Overview of Existing Solutions
355(2)
26.3 New Design Expectations and Potential Research Directions
357(2)
26.3.1 Enabling Technologies for Super-Sidelinks
357(1)
26.3.2 Integration of Super-Sidelinks with Access Links as One Design
357(2)
References
359(1)
Summary of Part V
360(1)
Part VI New Features for 6G Network Architecture Design
361(86)
Introduction to Part VI
363(4)
27 Technologies For The Network Al Architecture
367(12)
27.1 Background
367(1)
27.2 Design Considerations and Principles
368(2)
27.2.1 Key Requirements
368(1)
27.2.2 Gaps
369(1)
27.3 Architectural Features
370(8)
27.3.1 Overall Design Scope
370(2)
27.3.2 Task-Oriented Communication
372(2)
27.3.3 Deeply Converged Computing and Communication at Edges
374(3)
27.3.4 AI Service Operations and Management
377(1)
References
378(1)
28 User-Centric Architecture Technologies
379(13)
28.1 Background
379(1)
28.2 Design Considerations and Principles
380(5)
28.2.1 Lessons Learned from Current Networks
380(2)
28.2.2 Key Requirements
382(3)
28.3 Architecture Features
385(6)
28.3.1 Decentralized Architecture for User-Centric Design
385(2)
28.3.2 Fusion of the Physical and Cyber Worlds
387(3)
28.3.3 Digital Asset Management
390(1)
References
391(1)
29 Native Trustworthiness
392(14)
29.1 Background of Trustworthiness
392(2)
29.1.1 From Philosophy to Society
392(1)
29.1.2 From Society to Industry
392(2)
29.2 Complex Communication Trustworthiness
394(1)
29.3 Trustworthiness Design Rules
395(3)
29.3.1 Principles
395(2)
29.3.2 Objectives
397(1)
29.4 Trustworthiness Technologies
398(5)
29.4.1 Multi-Lateral Trust Model
398(2)
29.4.2 Distributed Ledger Technology
400(1)
29.4.3 Post Quantum Cryptography
401(1)
29.4.4 Autonomous Security
402(1)
References
403(3)
30 Data Governance Architecture Technologies
406(9)
30.1 Background
406(1)
30.2 Design Considerations and Principles
406(2)
30.3 Architecture Features
408(5)
30.3.1 Independent Data Plane
409(1)
30.3.2 Data Governance Multi-Player Roles
409(1)
30.3.3 Data Resource
410(1)
30.3.4 Data Collection
411(1)
30.3.5 Data Analytics
411(1)
30.3.6 Data Desensitization
412(1)
References
413(2)
31 Multi-Player Ecosystem Architecture Technologies
415(13)
31.1 Background
415(1)
31.2 Design Considerations and Principles
416(1)
31.3 Architecture Features
417(9)
31.3.1 Distributed Ledger Technology
418(2)
31.3.2 Multi-Player Platform
420(1)
31.3.3 Identity Management
421(1)
31.3.4 Data Management
422(1)
31.3.5 Network Control
423(2)
31.3.6 Operation and Business Support
425(1)
References
426(2)
32 Non-Terrestrial Network Integrated Architecture Technologies
428(19)
32.1 Background
428(2)
32.2 Design Considerations and Principles
430(4)
32.2.1 Satellite Constellation
431(1)
32.2.2 Low Latency at Global Scale
432(1)
32.2.3 Connectivity Provisioning
433(1)
32.2.4 Multi-Service Capability
433(1)
32.3 Architecture Features
434(10)
32.3.1 Latency
434(6)
32.3.2 Connectivity Models
440(1)
32.3.3 Routing in Space
441(2)
32.3.4 Operations, Administration, and Maintenance
443(1)
References
444(1)
Summary of Part VI
445(2)
Part VII Summary and Future Work
447(11)
33 6G Ecosystem And Roadmap
449(9)
33.1 6G Initiatives and Ecosystem
449(4)
33.1.1 ITU-R Initiatives
449(1)
33.1.2 Regional Activities
449(2)
33.1.3 Views from Industry and Academia
451(2)
33.2 Roadmap to 2030
453(2)
References
455(3)
Index 458
Wen Tong is the CTO of Huawei Wireless and is the Huawei 5G chief scientist. Dr. Tong is also an IEEE Fellow and Fellow of Canadian Academy of Engineering. He was the recipient of IEEE Communications Society Distinguished Industry Leader Award, and the R. A. Fessenden Medal. Peiying Zhu is senior vice president of wireless research at Huawei and is a Huawei Fellow. She is also an IEEE Fellow and Fellow of Canadian Academy of Engineering.