Preface |
|
viii | |
|
1 Setting the stage: why ab initio molecular dynamics? |
|
|
1 | (8) |
Part I Basic techniques |
|
9 | (166) |
|
2 Getting started: unifying MD and electronic structure |
|
|
11 | (74) |
|
2.1 Deriving classical molecular dynamics |
|
|
11 | (11) |
|
2.2 Ehrenfest molecular dynamics |
|
|
22 | (2) |
|
2.3 Born-Oppenheimer molecular dynamics |
|
|
24 | (3) |
|
2.4 Car-Parrinello molecular dynamics |
|
|
27 | (24) |
|
2.5 What about Hellmann-Feynman forces? |
|
|
51 | (5) |
|
2.6 Which method to choose? |
|
|
56 | (11) |
|
2.7 Electronic structure methods |
|
|
67 | (8) |
|
|
75 | (10) |
|
3 Implementation: using the plane wave basis set |
|
|
85 | (51) |
|
3.1 Introduction and basic definitions |
|
|
85 | (8) |
|
|
93 | (6) |
|
3.3 Exchange and correlation energy |
|
|
99 | (5) |
|
3.4 Total energy, gradients, and stress tensor |
|
|
104 | (5) |
|
3.5 Energy and force calculations in practice |
|
|
109 | (2) |
|
3.6 Optimizing the Kohn-Sham orbitals |
|
|
111 | (8) |
|
|
119 | (9) |
|
3.8 Program organization.an,d,layout |
|
|
128 | (8) |
|
4 Atoms with plane waves: accurate pseudopotentials |
|
|
136 | (39) |
|
4.1 Why pseudopotentials? |
|
|
137 | (1) |
|
4.2 Norm-conserving pseudopotentials |
|
|
138 | (14) |
|
4.3 Pseudopotentials in' thei plane wave basis |
|
|
152 | (5) |
|
4.4 Dual-space Gaussian pseudopotentials |
|
|
157 | (3) |
|
4.5 Nonlinear core correction |
|
|
160 | (2) |
|
4.6 Pseudopotential transferability |
|
|
162 | (5) |
|
4.7 Example: pseudopotentials for carbon |
|
|
167 | (8) |
Part II Advanced techniques |
|
175 | (194) |
|
5 Beyond standard ab initio molecular dynamics |
|
|
177 | (109) |
|
|
177 | (1) |
|
5.2 Beyond microcanonics: thermostats, barostats, meta-dynamics |
|
|
178 | (16) |
|
5.3 Beyond ground states: ROKS, surface hopping, FEMD, TDDFT |
|
|
194 | (39) |
|
5.4 Beyond classical nuclei: path integrals and quantum corrections |
|
|
233 | (34) |
|
5.5 Hybrid QM/MM molecular dynamics |
|
|
267 | (19) |
|
6 Beyond norm-conserving pseudopotentials |
|
|
286 | (23) |
|
|
286 | (1) |
|
6.2 The PAW transformation |
|
|
287 | (3) |
|
|
290 | (2) |
|
6.4 Ultrasoft pseudopotentials |
|
|
292 | (4) |
|
6.5 PAW energy expression |
|
|
296 | (1) |
|
6.6 Integrating the Car-Parrinello equations |
|
|
297 | (12) |
|
|
309 | (41) |
|
7.1 Perturbation theory: Hessian, polarizability, NMR |
|
|
309 | (18) |
|
7.2 Wannier functions: dipole moments, IR spectra, atomic charges |
|
|
327 | (23) |
|
|
350 | (19) |
|
|
350 | (2) |
|
|
352 | (2) |
|
8.3 Computational kernels |
|
|
354 | (5) |
|
8.4 Massively parallel processing |
|
|
359 | (10) |
Part III Applications |
|
369 | (50) |
|
9 From materials to biomolecules |
|
|
371 | (36) |
|
|
371 | (1) |
|
9.2 Solids, minerals, materials, and polymers |
|
|
372 | (4) |
|
|
376 | (4) |
|
9.4 Mechanochemistry and molecular electronics |
|
|
380 | (2) |
|
9.5 Water and aqueous solutions |
|
|
382 | (3) |
|
9.6 Non-aqueous liquids and solutions |
|
|
385 | (4) |
|
9.7 Glasses and amorphous systems |
|
|
389 | (1) |
|
9.8 Matter at extreme cohditions |
|
|
390 | (2) |
|
9.9 Clusters, fullerenes, and nanotubes |
|
|
392 | (2) |
|
9.10 Complex and fluxional molecules |
|
|
394 | (2) |
|
9.11 Chemical reactions and transformations |
|
|
396 | (3) |
|
9.12 Homogeneous catalysis and zeolites |
|
|
399 | (1) |
|
9.13 Photophysics and photochemistry |
|
|
400 | (3) |
|
9.14 Biophysics and biochemistry |
|
|
403 | (4) |
|
10 Properties from ab initio simulations |
|
|
407 | (9) |
|
|
407 | (1) |
|
10.2 Electronic structure analyses |
|
|
407 | (3) |
|
10.3 Infrared spectroscopy |
|
|
410 | (1) |
|
10.4 Magnetism, NMR and EPR spectroscopy |
|
|
411 | (1) |
|
10.5 Electronic spectroscopy and redox properties |
|
|
412 | (1) |
|
10.6 X-ray diffraction and Compton scattering |
|
|
413 | (1) |
|
10.7 External electric fields |
|
|
414 | (2) |
|
|
416 | (3) |
Bibliography |
|
419 | (131) |
Index |
|
550 | |