Atjaunināt sīkdatņu piekrišanu

E-grāmata: ABCs of Gene Cloning

  • Formāts: PDF+DRM
  • Izdošanas datums: 26-May-2018
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319779829
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 33,30 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 26-May-2018
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319779829
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Clear and concise, this easy-to-use book offers an introductory course on the language of gene cloning, covering microbial, plant, and mammalian systems. It presents the nuts and bolts of gene cloning in a well-organized and accessible manner. Part I of this book outlines the essentials of biology and genetics relevant to the concept of gene cloning. Part II describes common techniques and approaches of gene cloning, ranging from the basic mechanics of DNA manipulation, vector systems, process transformation, to gene analysis. Part III & IV present application technologies of major impact in agriculture, biomedicine, and related areas. 

The ABCs of Gene Cloning, Third Edition contains updates including a tutorial chapter on gene-vector construction, methodologies on exome sequencing in finding disease genes, revised topics on gene therapy and whole genome sequencing, new developments for gene targeting and genome editing, as well as the current state of next generation sequencing. With more than 140 illustrations, this new edition provides an invaluable text for students and anyone who have interest in gaining proficiency in reading and speaking the language of gene cloning.

Preface to the Third Edition vii
Preface to the Second Edition ix
Preface to the First Edition xi
Part One Fundamentals of Genetic Processes
1 Introductory Concepts
3(10)
1.1 What Is DNA and What Is a Gene?
3(1)
1.2 What Is Gene Cloning?
4(1)
1.3 Cell Organizations
5(1)
1.4 Heredity Factors and Traits
6(2)
1.5 Mitosis and Meiosis
8(1)
1.6 Relating Genes to Inherited Traits
9(1)
1.7 Why Gene Cloning?
10(3)
2 Structures of Nucleic Acids
13(8)
2.1 5'-P and 3'-OH Ends
13(1)
2.2 Purine and Pyrimidine Bases
14(1)
2.3 Complementary Base Pairing
15(1)
2.4 Writing a DNA Molecule
16(1)
2.5 Describing DNA Sizes
17(1)
2.6 Denaturation and Renaturation
17(1)
2.7 Ribonucleic Acid
18(3)
3 Structures of Proteins
21(8)
3.1 Amino Acids
21(1)
3.2 The Peptide Bond
22(2)
3.3 Structural Organization
24(1)
3.4 Posttranslational Modification
25(1)
3.5 Enzymes
26(3)
4 The Genetic Process
29(10)
4.1 From Genes to Proteins
29(1)
4.2 Transcription
29(1)
4.3 Translation
30(1)
4.4 The Genetic Code
31(1)
4.5 Why Present a Sequence Using the Coding Strand?
32(1)
4.6 The Reading Frame
33(2)
4.7 DNA Replication
35(1)
4.8 The Replicon and Replication Origin
36(1)
4.9 Relating Replication to Gene Cloning
37(2)
5 Organization of Genes
39(14)
5.1 The Lactose Operon
39(1)
5.2 Control of Transcription
40(4)
5.2.1 Where Are the Transcription Start Site and Termination Site?
40(2)
5.2.2 When Does Transcription Start or Stop?
42(2)
5.3 Control of Translation
44(1)
5.3.1 Ribosome Binding Site and Start Codon
44(1)
5.3.2 Translation Termination Site
44(1)
5.4 The Tryptophan Operon
44(3)
5.4.1 Co-repressor
45(1)
5.4.2 Attenuation
45(2)
5.4.3 Hybrid Promoters
47(1)
5.5 The Control System in Eukaryotic Cells
47(6)
5.5.1 Transcriptional Control
48(1)
5.5.2 Introns and Exons
48(1)
5.5.3 Capping and Tailing
49(1)
5.5.4 Ribosome Binding Sequence
50(1)
5.5.5 Monocistronic and Polycistronic
50(3)
6 Reading the Nucleotide Sequence of a Gene
53(14)
6.1 The E. coli dut Gene
53(2)
6.2 The Human bgn Gene
55(12)
6.2.1 Reading the Genomic Sequence
59(1)
6.2.2 Reading the cDNA Sequence
60(7)
Part Two Techniques and Strategies of Gene Cloning
7 Enzymes Used in Cloning
67(8)
7.1 Restriction Enzymes
67(1)
7.2 Ligase
68(1)
7.3 DNA Polymerases
68(4)
7.3.1 E. coli DNA Polymerase I
69(2)
7.3.2 Bacteriophage T4 and T7 Polymerase
71(1)
7.3.3 Reverse Transcriptase
72(1)
7.4 Phosphatase and Kinase
72(3)
8 Techniques Used in Cloning
75(18)
8.1 DNA Isolation
75(1)
8.2 Gel Electrophoresis
75(3)
8.2.1 Agarose Gel Electrophoresis
76(1)
8.2.2 Polyacrylamide Gel Electrophoresis
76(2)
8.3 Western Blot
78(1)
8.4 Southern Transfer
78(1)
8.5 Colony Blot
78(2)
8.6 Hybridization
80(2)
8.7 Colony PCR
82(1)
8.8 Immunological Techniques
82(2)
8.9 DNA Sequencing
84(3)
8.10 Polymerase Chain Reaction
87(1)
8.11 Site-Directed Mutagenesis
88(3)
8.12 Non-radioactive Detection Methods
91(2)
9 Cloning Vectors for Introducing Genes into Host Cells
93(30)
9.1 Vectors for Bacterial Cells
93(11)
9.1.1 Plasmid Vectors
93(6)
9.1.2 Bacteriophage Vectors
99(3)
9.1.3 Cosmids
102(1)
9.1.4 Phagemids
103(1)
9.2 Yeast Cloning Vectors
104(2)
9.2.1 The 2 μ Circle
104(2)
9.2.2 The Pichia pastoris Expression Vectors
106(1)
9.3 Vectors for Plant Cells
106(6)
9.3.1 Binary Vector System
107(2)
9.3.2 Cointegrative Vector System
109(1)
9.3.3 Genetic Markers
109(3)
9.3.4 Plant Specific Promoters
112(1)
9.4 Vectors for Mammalian Cells
112(11)
9.4.1 SV40 Viral Vectors
113(1)
9.4.2 Direct DNA Transfer
114(1)
9.4.3 Insect Baculovirus
115(4)
9.4.4 Retrovirus
119(4)
10 Gene-Vector Construction
123(8)
10.1 Cloning or Expression
123(1)
10.2 The Basic Components
123(2)
10.2.1 Expression Vectors
124(1)
10.3 Reading a Vector Map
125(1)
10.4 The Cloning/Expression Region
125(2)
10.5 The Gene Must Ligate in Frame with the Vector for Expression
127(1)
10.6 Linkers and Adapters for Introducing Restriction Sites
128(3)
11 Transformation
131(6)
11.1 Calcium Salt Treatment
131(1)
11.2 Electroporation
132(1)
11.3 Agrobacterium Infection
132(1)
11.4 The Biolistic Process
132(1)
11.5 Viral Transfection
133(1)
11.6 Microinjection
133(1)
11.7 Nuclear Transfer
134(1)
11.8 Cell-Free Expression
134(3)
12 Isolating Genes for Cloning
137(6)
12.1 The Genomic Library
137(1)
12.2 The cDNA Library
138(2)
12.3 Choosing the Right Cell Types for mRNA Isolation
140(3)
Part Three Impact of Gene Cloning: Applications in Agriculture
13 Improving Tomato Quality by Antisense RNA
143(6)
13.1 Antisense RNA
143(2)
13.2 A Strategy for Engineering Tomatoes with Antisense RNA
145(4)
14 Transgenic Crops Engineered with Insecticidal Activity
149(4)
14.1 Bacillus thuringiensis Toxins
149(1)
14.2 Cloning of the cry Gene into Cotton Plants
150(3)
14.2.1 Modifying the cry Gene
150(1)
14.2.2 The Intermediate Vector
150(1)
14.2.3 Transformation by Agrobacterium
150(3)
15 Transgenic Crops Conferred with Herbicide Resistance
153(4)
15.1 Glyphosate
153(2)
15.2 Cloning of the aroA gene
155(2)
16 Growth Enhancement in Transgenic Fish
157(6)
16.1 Gene Transfer in Fish
157(1)
16.2 Cloning Salmons with a Chimeric Growth Hormone Gene
158(5)
Part Four Impact of Gene Cloning: Applications in Medicine and Related Areas
17 Microbial Production of Recombinant Human Insulin
163(4)
17.1 Structure and Action of Insulin
163(1)
17.2 Cloning Human Insulin Gene
164(3)
18 Finding Disease-Causing Genes
167(10)
18.1 Genetic Linkage
167(2)
18.1.1 Frequency of Recombination
168(1)
18.1.2 Genetic Markers
169(1)
18.2 Positional Cloning
169(3)
18.2.1 Chromosome Walking
170(1)
18.2.2 Chromosome Jumping
171(1)
18.2.3 Yeast Artificial Chromosome
171(1)
18.3 Exon Amplification
172(1)
18.4 Isolation of the Mouse Obese Gene
173(1)
18.5 Exome Sequencing
173(4)
18.5.1 Targeted Enrichment by Sequence Capture
174(1)
18.5.2 Disease Gene Identification
175(2)
19 Human Gene Therapy
177(10)
19.1 Physical and Chemical Methods
177(2)
19.2 Biological Methods
179(2)
19.2.1 Life Cycle of Retroviruses
179(1)
19.2.2 Construction of a Safe Retrovirus Vector
179(1)
19.2.3 Gene Treatment of Severe Combined Immune Deficiency
180(1)
19.3 Adeno-Associated Virus
181(3)
19.3.1 Life Cycle of Adeno-Associated Virus
182(1)
19.3.2 Recombinant Adeno-Associated Virus
182(2)
19.3.3 Recombinant Adeno-Associated Virus-Mediated Gene Treatment for Leber's Congenital Amaurosis Type 2
184(1)
19.4 Therapeutic Vaccines
184(3)
19.4.1 Construction of DNA Vaccines
185(1)
19.4.2 Delivery of DNA Vaccines
185(2)
20 Gene Targeting and Genome Editing
187(12)
20.1 Recombination
187(1)
20.2 Replacement Targeting Vectors
188(1)
20.3 Gene Targeting Without Selectable Markers
189(3)
20.3.1 The PCR Method
190(1)
20.3.2 The Double-Hit Method
190(1)
20.3.3 The Cre/loxP Recombination
191(1)
20.4 Gene Targeting for Xenotransplants
192(1)
20.5 Engineered Nucleases: ZFN, TALEN, CRISPR
193(6)
20.5.1 Zinc-Finger Nucleases
194(1)
20.5.2 Transcription Activator-Like Effector Nucleases
194(1)
20.5.3 The CRISPR/Cas System
195(1)
20.5.4 Nonhomologous End Joining and Homology-Directed Repair
196(1)
20.5.5 Expressing Engineered Nucleases in Target Cells
196(3)
21 DNA Typing
199(10)
21.1 Variable Number Tandem Repeats
199(1)
21.2 Polymorphism Analysis Using VNTR Markers
200(1)
21.3 Single-Locus and Multi-locus Probes
201(1)
21.4 Paternity Case Analysis
201(1)
21.5 Short Tandem Repeat Markers
202(3)
21.5.1 The Combined DNA Index System
204(1)
21.6 Mitochondrial DNA Sequence Analysis
205(4)
22 Transpharmers: Bioreactors for Pharmaceutical Products
209(4)
22.1 General Procedure for Production of Transgenic Animals
210(1)
22.2 Transgenic Sheep for arAntitrypsin
210(3)
23 Animal Cloning
213(6)
23.1 Cell Differentiation
213(1)
23.2 Nuclear Transfer
214(1)
23.3 The Cloning of Dolly
215(1)
23.4 Gene Transfer for Farm Animals
216(3)
24 Whole Genome and Next Generation Sequencing
219(12)
24.1 Genetic Maps
219(2)
24.1.1 DNA Markers
220(1)
24.1.2 Pedigree Analysis
220(1)
24.2 Physical Maps
221(3)
24.2.1 Sequence Tagged Sites
221(1)
24.2.2 Radiation Hybridization
221(1)
24.2.3 Clone Libraries
222(1)
24.2.4 The Bacterial Artificial Chromosome Vector
223(1)
24.3 Comprehensive Integrated Maps
224(1)
24.4 Strategies For Genome Sequencing
224(2)
24.4.1 Hierarchical Shotgun Sequencing
224(2)
24.4.2 Whole-Genome Shotgun Sequencing
226(1)
24.5 Next Generation Sequencing of Whole Genomes
226(5)
24.5.1 The Basic Scheme of NGS
227(4)
Suggested Readings 231(14)
Index 245
Dominic W. S. Wong, Ph.D. is a scientist at the Western Regional Research Center, Albany, California, USA.  Dr. Wong is also the sole author of Mechanism and Theory in Food Chemistry (1989, 2018), Food Enzymes: Structure and Mechanism (1995), and co-editor of Handbook of Food Enzymology (2003).