Atjaunināt sīkdatņu piekrišanu

E-grāmata: Abelian Groups, Rings, Modules, and Homological Algebra

Edited by (Auburn University, Alabama, USA)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 300,55 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

About the book

In honor of Edgar Enochs and his venerable contributions to a broad range of topics in Algebra, top researchers from around the world gathered at Auburn University to report on their latest work and exchange ideas on some of today's foremost research topics. This carefully edited volume presents the refereed papers of the participants of these talks along with contributions from other veteran researchers who were unable to attend.

These papers reflect many of the current topics in Abelian Groups, Commutative Algebra, Commutative Rings, Group Theory, Homological Algebra, Lie Algebras, and Module Theory. Accessible even to beginning mathematicians, many of these articles suggest problems and programs for future study. This volume is an outstanding addition to the literature and a valuable handbook for beginning as well as seasoned researchers in Algebra.

about the editors

H. PAT GOETERS completed his undergraduate studies in mathematics and computer science at Southern Connecticut State University and received his Ph.D. in 1984 from the University of Connecticut under the supervision of William J. Wickless. After spending one year in a post-doctoral position in Wesleyan University under the tutelage of James D. Reid, Goeters was invited for a tenure track position in Auburn University by Ulrich F. Albrecht. Soon afterwards, William Ullery and Overtoun Jenda were hired, and so began a lively Algebra group.



OVERTOUN M. G. JENDA received his bachelor's degree in Mathematics from Chancellor College, the University of Malawi. He moved to the U.S. 1977 to pursue graduate studies at University of Kentucky, earning his Ph.D. in 1981 under the supervision of Professor Edgar Enochs. He then returned to Chancellor College, where he was a lecturer (assistant professor) for three years. He moved to the University of Botswana for another three-year stint as a lecturer before moving back to the University of Kentucky as a visiting assistant professor in 1987. In 1988, he joined the Algebra research group at Auburn University.
Acknowledgment ix
Biography of Professor Edgar Enochs xi
Conference Participant List xxi
Contributor List xxv
About the Editors xxix
Preface xxxi
Generalizing Warfield's Hom and Tensor Relations
1(14)
Ulrich Albrecht
Pat Goeters
Introduction
1(1)
Self-Small Modules
1(2)
Projectivity Properties
3(1)
The Class MA
4(2)
Domains Which Support Warfield's Results
6(1)
Replicating Duality for Domains
7(2)
Duality and Infinite Products
9(1)
Mixed Groups
10(5)
How Far Is An HFD from A UFD?
15(8)
David F. Anderson
Elizabeth V. Mclaughlin
Introduction
15(1)
Λ(R)
16(3)
Localization
19(1)
Questions
20(3)
A Counter Example for A Question On Pseudo-Valuation Rings
23(6)
Ayman Badawi
Introduction
23(1)
Counter Example
24(5)
Co-Local Subgroups of Abelian Groups
29(10)
Joshua Buckner
Manfred Dugas
Introduction
29(1)
Basic Properties
30(4)
Cotorsion-free Groups as Co-local Subgroups
34(5)
Partition Bases and B(1) - Groups
39(12)
Immacolata Caruso
Clorinda De Vivo
Claudia Metelli
Introduction
39(1)
Preliminaries
40(2)
Partition Bases
42(1)
Direct Summands
43(1)
The Domain of (C, D)
44(2)
Indecomposable Summands
46(3)
Examples
49(2)
Associated Primes of the Local Cohomology Modules
51(8)
Mohammad T. Dibaei
Siamak Yassemi
Introduction
51(1)
General Case
52(1)
Special Case
53(3)
Generalized Local Cohomology
56(3)
On Inverse Limits of Bezout Domains
59(8)
David E. Dobbs
Marco Fontana
Introduction
59(1)
Results
60(7)
An Elementary Proof of Grothendieck's Theorem
67(8)
Edgar Enochs
Sergio Estrada Dominguez
Blas Torrecillas
Introduction
67(1)
The Main Theorem
68(2)
Grothendieck's Theorem
70(5)
Gorenstein Homological Algebra
75(12)
Edgar E. Enochs
Overtoun M. G. Jenda
Introduction
75(1)
Tate Homology and Cohomology
76(1)
Auslander and Gorenstein Rings
77(2)
The Kaplansky Program
79(1)
Iwanaga-Gorenstein Rings
79(1)
Gorenstein Homological Algebra
80(2)
Generalized Tate Homology and Cohomology
82(1)
The Avramov-Martsinkovsky Program
82(2)
Gorenstein Flat Modules
84(1)
Salce's Cotorsion Theories
85(1)
Other Possibilities
86(1)
Modules and Point Set Topological Spaces
87(20)
Theodore G. Faticoni
The Diagram
87(5)
Self-Small and Self-Slender Modules
92(2)
The Construction Function
94(1)
The Greek Maps
95(1)
Coherent Modules and Complexes
96(1)
Complete Sets of Invariants
97(1)
Unique Decompositions
98(3)
Homological Dimensions
101(2)
Miscellaneous
103(4)
Injective Modules and Prime Ideals of Universal Enveloping Algebras
107(14)
Jorg Feldvoss
Injective Modules and Prime Ideals
109(1)
Injective Hulls
110(3)
Locally Finite Submodules of the Coregular Module
113(3)
Minimal Injective Resolutions
116(5)
Commutative Ideal Theory without Finiteness Conditions
121(26)
Laszlo Fuchs
William Heinzer
Bruce Olberding
Introduction
122(1)
The Structure of Q-irreducible Ideals
123(5)
Completely Q-Irreducible and m-Canonical Ideals
128(5)
Q-irreducibility and Injective Modules
133(1)
Irredundant Decompositions and Semi-Artinian Modules
134(4)
Prufer Domains
138(2)
Questions
140(1)
Appendix: Corrections to [ 17]
141(6)
Covers and Relative Purity over Commutative Noetherian Local Rings
147(6)
Juan Ramon Garcia Rozas
Luis Oyonarte
Blas Torrecillas
Preliminaries
147(1)
τI-Closed Modules
148(1)
Relative Purity over Local Rings
149(1)
Relative Purity over Regular Local Rings
150(3)
Torsionless Linearly Compact Modules
153(6)
Rudiger Gobel
Saharon Shelah
Introduction
153(2)
Proof of the Theorem
155(4)
Big Indecomposable Mixed Modules over Hypersurface Singularities
159(16)
Wolfgang Hassler
Roger Wiegand
Introduction
159(2)
Bimodules
161(1)
Extensions
162(2)
Syzygies and Double Branched Covers
164(3)
Finding a Suitable Finite-Length Module
167(3)
The Main Application
170(5)
Every Endomorphism of a Local Warfield Module is the Sum of Two Automorphisms
175(8)
Paul Hill
Charles Megibben
William Ullery
Introduction
175(1)
The Key Lemma
176(4)
Proof of the Main Theorem
180(3)
Wakamatsu Tilting Modules, U-Dominant Dimension, and k-Gorenstein Modules
183(20)
Zhaoyong Huang
Introduction and Main Results
183(3)
Wakamatsu Tilting Modules
186(3)
The Proof of Main Results
189(5)
Exactness of the Double Dual
194(2)
A Generalization of k-Gorenstein Modules
196(7)
Γ-Separated Covers
203(14)
Lawrence S. Levy
Jan Trlifaj
Introduction
203(1)
G-Covers
204(4)
Γ-Separated Covers
208(2)
The Dedekind-Like Case
210(5)
Open Problems
215(2)
The Cotorsion Dimension of Modules and Rings
217(18)
Lixin Mao
Nanqing Ding
Introduction
217(1)
General Results
218(8)
Cotorsion Dimension under Change of Rings
226(2)
Applications in Commutative Rings
228(7)
Maximal Subrings of Homogeneous Functions
235(6)
Carlton J. Maxson
Introduction
235(1)
The Case of Torsion Groups
236(1)
The Case of Torsion-Free Groups
237(2)
Subrings of M0(A)
239(2)
Isotype Separable Subgroups of Mixed Abelian Groups
241(10)
Charles Megibben
William Ullery
Introduction
241(2)
Subgroups with k-covers of Almost Balanced Pure Subgroups
243(1)
Intersection Closure of Global Warfield Groups
244(3)
Isotype Separable Subgroups of Global Warfield Groups
247(4)
Note on the Generalized Derivation Tower Theorem for Lie Algebras
251(14)
Toukaiddine Petit
Fred Van Oystaeyen
Introduction
251(1)
Γ-Decomposition
252(6)
Derivation Tower of Lie Algebras: Case with Trivial Center
258(2)
The Derivation Tower of Lie Algebras: General Case
260(5)
Quotient Divisible Groups, ω-Groups, and an Example of Fuchs
265(10)
James D. Reid
Introduction
265(1)
On ω-groups
266(1)
Three Remarks
266(4)
Parameters
270(1)
Main Results
271(1)
Endomorphisms
271(4)
When are Almost Perfect Domains Noetherian?
275(10)
Luigi Salce
Introduction
275(1)
Known Results on the Noetherian Condition
276(1)
A Characterization of Noetherian Almost Perfect Domains
277(3)
ε-Closed Domains
280(5)
Pure Invariance in Torsion-free Abelian Groups
285(10)
Phill Schultz
Introduction
285(1)
Pure Fully Invariant Subgroups
286(5)
Traces and Kernels of cd Groups
291(4)
Compressible and Related Modules
295(20)
Patrick F. Smith
Introduction
295(1)
Prime and Compressible Modules
296(4)
Monoform Modules
300(5)
Nonsingular Modules
305(4)
Fully Bounded Rings
309(6)
Index 315


Pat Goeters, Overtoun M.G. Jenda