Atjaunināt sīkdatņu piekrišanu

E-grāmata: About Stars: Their Formation, Evolution, Compositions, Locations And Companions

(University Of York, Uk)
  • Formāts: 388 pages
  • Izdošanas datums: 24-Jul-2019
  • Izdevniecība: World Scientific Europe Ltd
  • Valoda: eng
  • ISBN-13: 9781786347145
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 28,18 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 388 pages
  • Izdošanas datums: 24-Jul-2019
  • Izdevniecība: World Scientific Europe Ltd
  • Valoda: eng
  • ISBN-13: 9781786347145
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

'Each chapter ends with up to six student problems. There is full set of worked answers at the end of the book but modern students might not be enlightened by the samples of Fortran code, probably meant to illustrate how realistic calculations might be made.'Contemporary PhysicsOn a clear and moonless night, especially in remote areas such as deserts, myriads of points of light cover the sky. The great majority of them are stars, many like the Sun, but so far away that they can only be seen as point sources of light. The problem faced by astronomers is to find their properties and distances, just from the light they emit. This is done by using the knowledge of science, mainly physics, acquired from small-scale experiments carried out on Earth. However, the stars themselves are laboratories in which matter behaves in ways that cannot be reproduced on Earth so, in finding out about stars, we complement scientific knowledge gained from earthbound experimentation.This book describes the means some very ingenious by which to explore the properties, locations and planetary companions of stars, and provides a sound foundation for further study.
About the Author v
Introduction vii
Part 1 Creating Material for the First Stars
1(32)
Chapter 1 The Creation of the First Matter
3(30)
1.1 The Nature of Matter
3(3)
1.2 The Components of Atoms
6(9)
1.2.1 The Discovery and Properties of the Electron
6(4)
1.2.2 The Discovery of Protons and Neutrons
10(3)
1.2.3 The Elusive Neutrino
13(2)
1.3 Other Particles
15(4)
1.4 Even More Particles
19(2)
1.4.1 Leptons
19(1)
1.4.2 Quarks
19(2)
1.5 How the Universe Began
21(8)
1.5.1 The Expanding Universe
21(2)
1.5.2 The Big Bang Hypothesis
23(2)
1.5.3 The Creation of Particles and Atoms
25(4)
1.6 Dark Matter and Dark Energy
29(2)
Problems 1
31(2)
Part 2 Making Stars
33(62)
Chapter 2 Some Useful Physical Theory
35(26)
2.1 The Gravitational Potential Energy of a Spherically-Symmetric Sphere
35(2)
2.2 The Virial Theorem
37(2)
2.3 The Jeans Critical Mass
39(3)
2.4 Free-Fall Collapse
42(5)
2.4.1 The Relationship of the Virial Theorem to Free Fall
45(2)
2.5 Gravitational Instability
47(2)
2.6 The Equipartition Theorem
49(1)
2.7 Cooling Processes
50(2)
2.8 Opacity
52(2)
2.9 The Light from Stars
54(3)
2.10 The Doppler Effect
57(2)
Problems 2
59(2)
Chapter 3 The Evolution of the Universe
61(12)
3.1 The Structure of the Universe
61(2)
3.2 The First Condensations
63(3)
3.3 The Development of Galaxies and Larger Structures
66(2)
3.4 Forming the First Stars
68(3)
Problem 3
71(2)
Chapter 4 The Formation and Evolution of Stars
73(22)
4.1 From Protostar to Main-Sequence Star
73(5)
4.2 Types of Pressure Within a Star
78(1)
4.3 Evolution from the Main Sequence for Moderate and Low-Mass Stars
79(4)
4.4 Evolution from the Main Sequence for High-Mass Stars
83(3)
4.5 The Ages of Globular Clusters
86(2)
4.6 The Interstellar Medium
88(1)
4.7 The Formation of Dark Cool Clouds
88(2)
4.8 The Formation of Protostars
90(1)
4.9 Types of Clusters and Their Locations
91(2)
Problems 4
93(2)
Part 3 The Structure and Composition of Stars
95(22)
Chapter 5 The Equilibrium of Main-Sequence Stars
97(8)
5.1 Conditions for Modelling a Main-Sequence Star
97(1)
5.2 The Pressure Gradient
98(1)
5.3 The Gradient of Included Mass
99(1)
5.4 The Luminosity Gradient
100(1)
5.5 The Temperature Gradient
100(2)
5.6 Modelling Stars
102(1)
Problem 5
103(2)
Chapter 6 Finding the Compositions of Stars
105(12)
6.1 Atoms, Isotopes, Molecules, Ions and Energy Levels
105(2)
6.2 The Nature of Light
107(2)
6.3 Fraunhofer Lines: The Interaction of Light with Atoms
109(2)
6.4 The Composition of Stars
111(2)
6.5 Metallicity
113(2)
Problems 6
115(2)
Part 4 The Distances of Stars
117(32)
Chapter 7 Finding the Distances of Nearby Stationary Stars
119(10)
7.1 How Far Away is That Church Steeple?
120(3)
7.2 Radians and Small Angles
123(1)
7.3 How Far Away is That Stationary Star?
124(3)
7.4 Space-based Measurements
127(1)
Problem 7
128(1)
Chapter 8 Finding the Distances and Velocities of Nearby Moving Stars
129(6)
8.1 Speed and Velocity
129(1)
8.2 The Components of a Star's Velocity
130(1)
8.3 Finding the Distance and Transverse Velocity of a Nearby Star
130(2)
8.4 Determining the Radial Velocity of a Star
132(1)
Problem 8
133(2)
Chapter 9 Finding Distances to Faraway Stars
135(14)
9.1 Finding the Temperatures of Stars
135(3)
9.2 Luminosity, Magnitude and Brightness
138(2)
9.3 Distance Measurement Out to 10,000 pc Using Main-Sequence Stars
140(2)
9.4 Distance Measurement Using Cepheid Variables
142(2)
9.5 Distance Measurement Using Rotating Galaxies
144(1)
9.6 Distance Estimation from Type 1a Supernovae
145(2)
Problems 9
147(2)
Part 5 The General Properties of Stars
149(36)
Chapter 10 Determining the Radii of Stars
151(12)
10.1 The Radii of Main-Sequence Stars
151(2)
10.2 The Radii of Giant Stars
153(2)
10.3 The Radii of White Dwarfs
155(1)
10.3.1 The Nature of White Dwarf Material
155(1)
10.3.2 Fermions
156(1)
10.4 Basis of a Theoretical Approach to White Dwarf Structure
156(1)
10.4.1 Degeneracy Kinetic Energy
156(1)
10.5 An Approximate Treatment of White Dwarf Structure
157(1)
10.6 A Relativistic Treatment
158(2)
10.7 Neutron Stars and Black Holes
160(1)
Problems 10
161(2)
Chapter 11 Determining the Masses of Stars
163(16)
11.1 General Comments
163(1)
11.2 Kepler's Laws
163(2)
11.3 The Characteristics of an Ellipse
165(1)
11.4 The Centre of Mass and the Orbits of Binary Stars
166(2)
11.5 The Mathematics of Binary Star Orbits
168(1)
11.6 Determining the Masses of Stars in Binary Systems
169(7)
11.6.1 Wide Binaries
169(1)
11.6.2 Spectroscopic and Eclipsing Binaries
170(4)
11.6.3 Astrometric Binary System
174(2)
Problems 11
176(3)
Chapter 12 Other Stars and Star-like Objects
179(6)
12.1 Pulsars
179(2)
12.2 Quasars
181(1)
12.3 Wolf--Rayet Stars
182(1)
Problem 12
183(2)
Part 6 Exoplanets
185(106)
Chapter 13 Planets About Other Stars
187(16)
13.1 Planets Around Pulsars
187(2)
13.2 Detecting Exoplanets Around Main-Sequence Stars
189(4)
13.3 Transiting Exoplanets
193(1)
13.4 The Orbits of Exoplanets
194(4)
13.4.1 Semi-Major Axis and Eccentricity
194(1)
13.4.2 Inclination (Spin-Orbit Misalignment)
195(3)
13.5 Other Observations
198(1)
13.6 Other Features Associated with Planets
198(1)
13.7 Requirements for a Plausible Theory of Planet Formation
199(1)
Problems 13
200(3)
Chapter 14 The Nebula Theory
203(34)
14.1 The Laplace Nebula Theory
203(2)
14.2 Revisiting Nebula Ideas and the Angular Momentum Problem
205(12)
14.2.1 Angular Momentum Transfer by a Magnetic Field
207(1)
14.2.2 The Armitage and Clarke Mechanism
208(1)
14.2.3 A Mechanical Process for Transferring Angular Momentum
209(2)
14.2.4 Angular Momentum Distribution in a Newly Formed Star
211(1)
14.2.5 Magnetic Braking of Stellar Spin
211(6)
14.3 The Formation of Planets
217(8)
14.3.1 Converting a Dusty Disk into Planets
218(1)
14.3.2 Forming Planetesimals
218(3)
14.3.3 From Planetesimals to Planets
221(4)
14.4 Migration Mechanisms
225(5)
14.4.1 Type I Migration
225(1)
14.4.2 Type II Migration
225(1)
14.4.3 The Interaction of a Planet with Planetesimals
226(1)
14.4.4 The Nice Model
227(3)
14.5 The Proportion of Stars with Planets
230(1)
14.6 Smaller Bodies of the Solar System
231(3)
14.6.1 Asteroids
231(1)
14.6.2 The Kuiper Belt
232(1)
14.6.3 Dwarf Planets
232(1)
14.6.4 The Oort Cloud
233(1)
14.7 The Inclinations of Exoplanet Orbits
234(1)
14.8 Exoplanets Around Binary Stars
234(1)
14.9 Satellite Formation
235(1)
14.10 An Overview of the Nebula Theory
235(1)
Problems 14
236(1)
Chapter 15 The Capture Theory
237(54)
15.1 Introduction
237(1)
15.2 Observations Relating to Star Formation
237(2)
15.3 Interactions in a Star-Forming Cloud
239(1)
15.4 Capture-Theory Simulations
240(4)
15.5 The Proportion of Stars with Planets
244(4)
15.6 Angular Momentum in the Solar System
248(1)
15.7 The Capture Theory and Circumstellar Disks
249(2)
15.8 The Evolution of Planetary Orbits
251(3)
15.9 Exoplanets Around Binary Stars
254(1)
15.10 Commensurabilities of Planetary Orbits
255(2)
15.11 The Inclinations of Exoplanet Orbits
257(2)
15.12 Satellites and Angular Momentum
259(1)
15.13 A Mechanism for Satellite Formation
260(4)
15.13.1 Dust Settling
261(1)
15.13.2 Formation of Satellitesimals
262(1)
15.13.3 From Satellitesimals to Satellites
263(1)
15.14 The Problem of the Terrestrial Planets
264(1)
15.15 Deuterium in the Colliding Planets
265(1)
15.16 The Planetary Collision; Earth and Venus
266(3)
15.17 The Moon
269(2)
15.18 Mars and Mercury
271(2)
15.19 The Neptune--Pluto--Triton System
273(2)
15.20 Asteroids and Comets
275(4)
15.21 Dwarf Planets
279(1)
15.22 The Ice Giants
280(4)
15.23 Isotopic Anomalies in Meteorites
284(4)
15.24 An Overview of the Capture Theory
288(3)
Problems 15 290(39)
Appendices
291(38)
Appendix A Planck's Radiation Law and Quantum Physics
293(6)
A.1 The Rayleigh--Jeans Radiation Law
294(1)
A.2 The Planck Radiation Law
295(3)
Problem A
298(1)
Appendix B The Relativistic Doppler Effect
299(5)
B.1 A Non-Relativistic Moving Clock
300(1)
B.2 A Relativistic Moving Clock
301(2)
B.3 The Relativistic Doppler Effect Equation
303(1)
Problem B
304(1)
Appendix C Energy Production in Stars
305(12)
C.1 Proton--Proton Reactions from a Classical Viewpoint
306(1)
C.2 An Approximate Quantum-Mechanical Approach
307(1)
C.3 A More Precise Quantum-Mechanical Approach
308(1)
C.3.1 The Distribution of the Relative Energies of Protons
308(1)
C.3.2 The Rate of Making Close Approaches
309(1)
C.3.3 The Tunnelling Probability
310(1)
C.3.4 The Cross-Section Factor
311(1)
C.3.5 The Energy Generation Function
312(1)
C.4 Nuclear Reaction Chains in the Sun
313(3)
Problems C
316(1)
Appendix D Radiation Pressure
317(4)
D.1 A Photon Model for Finding Radiation Pressure
317(1)
D.2 The Energy Density from the Planck Radiation Equation
318(1)
Problem D
319(2)
Appendix E Electron Degeneracy Pressure
321(4)
E.1 Position--Momentum Space
321(1)
E.2 The Energy Density in Degenerate Material
322(3)
Appendix F The Eddington Accretion Mechanism
325(4)
F.1 The Accretion Cross Section
325(2)
Problems F
327(2)
Solutions to Problems 329(26)
References 355(4)
Name Index 359(4)
Subject Index 363