Atjaunināt sīkdatņu piekrišanu

E-grāmata: Abstract Algebra and Famous Impossibilities

  • Formāts: PDF+DRM
  • Sērija : Universitext
  • Izdošanas datums: 06-Dec-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781441985521
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 59,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Universitext
  • Izdošanas datums: 06-Dec-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781441985521
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Develops the abstract algebra necessary to prove the impossibility of constructions to square the circle, double the cube, trisect the angle by geometrical means. Assumes linear algebra. Annotation copyright Book News, Inc. Portland, Or.

The famous problems of squaring the circle, doubling the cube and trisecting an angle captured the imagination of both professional and amateur mathematicians for over two thousand years. Despite the enormous effort and ingenious attempts by these men and women, the problems would not yield to purely geometrical methods. It was only the development. of abstract algebra in the nineteenth century which enabled mathematicians to arrive at the surprising conclusion that these constructions are not possible. In this book we develop enough abstract algebra to prove that these constructions are impossible. Our approach introduces all the relevant concepts about fields in a way which is more concrete than usual and which avoids the use of quotient structures (and even of the Euclidean algorithm for finding the greatest common divisor of two polynomials). Having the geometrical questions as a specific goal provides motivation for the introduction of the algebraic concepts and we have found that students respond very favourably. We have used this text to teach second-year students at La Trobe University over a period of many years, each time refining the material in the light of student performance.

Papildus informācija

Springer Book Archives
0.1 Three Famous Problems.- 0.2 Straightedge and Compass Constructions.-
0.3 Impossibility of the Constructions.- 1 Algebraic Preliminaries.- 1.1
Fields, Rings and Vector Spaces.- 1.2 Polynomials.- 1.3 The Division
Algorithm.- 1.4 The Rational Roots Test.- Appendix to
Chapter 1.- 2 Algebraic
Numbers and Their Polynomials.- 2.1 Algebraic Numbers.- 2.2 Monic
Polynomials.- 2.3 Monic Polynomials of Least Degree.- 3 Extending Fields.-
3.1 An Illustration: $$\mathbb{Q}(\sqrt 2 )$$.- 3.2 Construction of
$$\mathbb{F}(\alpha )$$.- 3.3 Iterating the Construction.- 3.4 Towers of
Fields.- 4 Irreducible Polynomials.- 4.1 Irreducible Polynomials.- 4.2
Reducible Polynomials and Zeros.- 4.3 Irreducibility and irr$$(\alpha
,\mathbb{F})$$.- 4.4 Finite-dimensional Extensions.- 5 Straightedge and
Compass Constructions.- 5.1 Standard Straightedge and Compass Constructions.-
5.2 Products, Quotients, Square Roots.- 5.3 Rules for Straightedge and
Compass Constructions.- 5.4 Constructible Numbers and Fields.- 6 Proofs of
the Impossibilities.- 6.1 Non-Constructible Numbers.- 6.2 The Three
Constructions are Impossible.- 6.3 Proving the All Constructibles Come From
Square Roots Theorem.- 7 Transcendence of e and ?.- 7.1 Preliminaries.- 7.2
e is Transcendental.- 7.3 Preliminaries on Symmetric Polynomials.- 7.4 ? is
Transcendental Part 1.- 7.5 Preliminaries on Complex-valued Integrals.- 7.6
? is Transcendental Part 2.- 8 An Algebraic Postscript.- 8.1 The Ring
$$\mathbb{F}\left[ X \right]_{p(X)}$$.- 8.2 Division and Reciprocals in
$$\mathbb{F}\left[ X \right]_{p(X)}$$.- 8.3 Reciprocals in $$\mathbb{F}\left(
\alpha \right)$$.- 9 Other Impossibilities and Abstract Algebra.- 9.1
Construction of Regular Polygons.- 9.2 Solution of Quintic Equations.- 9.3
Integration in Closed Form.