Atjaunināt sīkdatņu piekrišanu

E-grāmata: Accelerating Science and Engineering Discoveries Through Integrated Research Infrastructure for Experiment, Big Data, Modeling and Simulation: 22nd Smoky Mountains Computational Sciences and Engineering Conference, SMC 2022, Virtual Event, August 23-25, 2022, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 94,58 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 22nd Smoky Mountains Computational Sciences and Engineering Conference on Accelerating Science and Engineering Discoveries Through Integrated Research Infrastructure for Experiment, Big Data, Modeling and Simulation, SMC 2022, held virtually, during August 23–25, 2022. 

The 24 full papers included in this book were carefully reviewed and selected from 74 submissions. They were organized in topical sections as follows: foundational methods enabling science in an integrated ecosystem; science and engineering applications requiring and motivating an integrated ecosystem; systems and software advances enabling an integrated science and engineering ecosystem; deploying advanced technologies for an integrated science and engineering ecosystem; and scientific data challenges.
Foundational Methods Enabling Science in an Integrated
Ecosystem.- Computational Workflow for Accelerated Molecular Design Using
Quantum Chemical Simulations and Deep Learning Models.- Self-learning Data
Foundation for Scientific AI.- Preconditioners for batched iterative linear
solvers on GPUs.- Mobility Aware Computation Offloading Model for Edge
Computing.- Science and Engineering Applications Requiring and Motivating an
Integrated Ecosystem.- Machine Learning for First Principles Calculations of
Material Properties for Ferromagnetic Materials.- A Vision for Coupling
Operation of US Fusion Facilities with HPC Systems and the Implications for
Workflows and Data Management.- At-the-edge Data Processing for Low Latency
High Throughput Machine Learning Algorithms.- Implementation of a framework
for deploying AI inference engines in FPGAs.- Systems and Software Advances
Enabling an Integrated Science and Engineering Ecosystem.- Calvera: A
Platform for the Interpretation and Analysis of Neutron Scattering
Data.- Virtual Infrastructure Twins: Software Testing Platforms for Computing
and Instrument Ecosystems.- The INTERSECT Open Federated Architecture for the
Laboratory of the Future.- Real-Time Edge Processing During Data
Acquisition.- Towards a Software Development Framework for Interconnected
Science Ecosystems.- Deploying Advanced Technologies for an Integrated
Science and Engineering Ecosystem.- Adrastea: An Efficient FPGA Design
Environment for Heterogenous Scientific Computing and Machine
Learning.- Toward an Autonomous Workflow for Bragg Peak Detection at
SNS.- Industrial experience deploying heterogeneous platforms for use in
multi-modal power systems design workflows.- Self-Describing Digital Assets
and their applications in an Integrated Science and Engineering
Ecosystem.- Simulation Workflows in Minutes, at Scale for Next-Generation
HPC.- Scientific Data Challenges.- Machine Learning approaches to High
Throughput Phenotyping.- SMC 2022 Data Challenge: Summit Spelunkers Solution
for Challenge 2.- Usage Pattern Analysis for The Summit Login Nodes.- Finding
Hidden Patterns in High Resolution Wind Flow Model
Simulations.- Investigating Relationships in Environmental and Community
Health: Correlations Of Environment, Urban Morphology, And Socio-Economic
Factors In The Los Angeles Metropolitan Statistical Area.- Patterns and
Predictions: Generative Adversarial Networks for Neighborhood Generation.