Atjaunināt sīkdatņu piekrišanu

E-grāmata: Accelerator Physics (Fourth Edition)

(Indiana Univ, Usa)
  • Formāts: 568 pages
  • Izdošanas datums: 15-Nov-2018
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813274693
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 61,99 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 568 pages
  • Izdošanas datums: 15-Nov-2018
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813274693
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Research and development of high energy accelerators began in 1911. Since then, progresses achieved are: 1. development of high gradient dc and rf accelerators, 2. achievement of high field magnets with excellent field quality, 3. discovery of transverse and longitudinal beam focusing principles, 4. invention of high power rf sources, 5. improvement of ultra-high vacuum technology, 6. attainment of high brightness (polarized/unpolarized) electron/ion sources, 7. advancement of beam dynamics and beam manipulation schemes, such as beam injection, 8. accumulation, slow and fast extraction, beam damping and beam cooling, instability feedback, etc. The impacts of the accelerator development are evidenced by the many ground-breaking discoveries in particle and nuclear physics, atomic and molecular physics, condensed matter physics, biology, biomedical physics, nuclear medicine, medical therapy, and industrial processing. This book is intended to be used as a graduate or senior undergraduate textbook in accelerator physics and science. It can be used as preparatory course material in graduate accelerator physics thesis research. The text covers historical accelerator development, transverse betatron motion, synchrotron motion, an introduction to linear accelerators, and synchrotron radiation phenomena in low emittance electron storage rings, introduction to special topics such as the free electron laser and the beam-beam interaction. Hamiltonian dynamics is used to understand beam manipulation, instability and nonlinearity. Each section is followed by exercises, which are designed to reinforce the concept discussed and to solve a realistic accelerator design problem.

Preface vii
Preface to Third Edition ix
Preface to Second Edition xi
Preface to First Edition xiii
Acknowledgments xv
Symbols and Notations xxix
List of Tables xxxiii
1 Introduction 1(32)
I Historical Developments
4(14)
I.1 Natural Accelerators
5(1)
I.2 Electrostatic Accelerators
5(1)
I.3 Induction Accelerators
6(2)
I.4 Radio-Frequency (RF) Accelerators
8(8)
I.5 Colliders and Storage Rings
16(2)
I.6 Synchrotron Radiation Storage Rings
18(1)
II Layout and Components of Accelerators
18(4)
II.1 Acceleration Cavities
19(1)
II.2 Accelerator Magnets
20(2)
II.3 Other Important Components
22(1)
III Accelerator Applications
22(11)
III.1 High Energy and Nuclear Physics
22(1)
III.2 Solid-State and Condensed-Matter Physics
23(1)
III.3 Other Applications
23(1)
Exercise
24(9)
2 Transverse Motion 33(196)
I Hamiltonian for Particle Motion in Accelerators
34(10)
I.1 Hamiltonian in Frenet-Serret Coordinate System
35(2)
I.2 Magnetic Field in Frenet-Serret Coordinate System
37(1)
I.3 Equation of Betatron Motion
38(1)
I.4 Particle Motion in Dipole and Quadrupole Magnets
39(1)
Exercise
40(4)
II Linear Betatron Motion
44(36)
II.1 Transfer Matrix and Stability of Betatron Motion
44(3)
II.2 Courant-Snyder Parametrization
47(1)
II.3 Floquet Transformation
48(5)
A Betatron tune
50(1)
B FODO cell
50(2)
C Doublet cells
52(1)
II.4 Action-Angle Variable and Floquet Transformation
53(2)
II.5 Courant-Snyder Invariant and Emittance
55(5)
A Emittance of a beam
56(1)
B The σ-matrix
57(1)
C Emittance measurement
57(2)
D Gaussian distribution function
59(1)
E Adiabatic damping and the normalized emittance
60(1)
II.6 Stability of Betatron Motion: A FODO Cell Example
60(1)
II.7 Symplectic Condition
61(1)
II.8 Effect of Space-Charge Force on Betatron Motion
62(7)
A The Kapchinskij-Vladimirskij (KV) distribution
62(1)
B The space charge force
63(2)
C The envelope equation for a space charge dominated beam
65(1)
D A uniform focusing paraxial system
66(1)
E Space-charge force for gaussian distribution
67(2)
Exercise
69(11)
III Effect of Linear Magnet Imperfections
80(42)
III.1 Closed-Orbit in the Presence of Dipole Field Error
80(6)
A The perturbed closed orbit and Green's function
80(2)
B Distributed dipole field error
82(1)
C The integer stopband integrals
82(1)
D Statistical estimation of closed-orbit errors
83(1)
E Closed-orbit correction
83(1)
F Effects of dipole field error on orbit length
84(2)
III.2 Extended Matrix Method for the Closed Orbit
86(1)
III.3 Application of Dipole Field Error
86(9)
A Orbit bumps
86(1)
B Fast kick for beam extraction
87(2)
C Effects of rf dipole field, rf knock-out
89(2)
D Orbit response matrix and accelerator modeling
91(3)
E Model Independent Analysis
94(1)
III.4 Quadrupole Field (Gradient) Errors
95(4)
A Betatron tune shift
95(1)
B Betatron amplitude function modulation (beta-beat)
96(1)
C The half-integer stopband integrals
96(2)
D Example of one quadrupole error in FODO cell lattice
98(1)
E Statistical estimation of stopband integrals
98(1)
F Effect of a zero tune shift π-doublet quadrupole pair
98(1)
III.5 Basic Beam Observation of Transverse Motion
99(3)
A Beam position monitor (BPM)
99(1)
B Measurements of betatron tune and phase-space ellipse
100(2)
III.6 Application of Quadrupole Field Error
102(1)
A β-function measurement
102(1)
B Tune jump
102(1)
III.7 Beam Spectra
103(5)
A Transverse spectra of a particle
103(2)
B Fourier spectra of a single beam with finite time span
105(1)
C Fourier spectra of many particles and Schottky noise
106(2)
III.8 Beam, Injection and Extraction
108(2)
A Beam injection and extraction
108(1)
B Beam extraction
109(1)
III.9 Mechanisms of Emittance Dilution and Diffusion
110(5)
A Emittance diffusion due to random scattering processes
110(1)
B Space charge effects
111(3)
C Emittance evolution measurements and modeling
114(1)
Exercise
115(7)
IV Off-Momentum Orbit
122(36)
IV.1 Dispersion Function
122(4)
A FODO cell
124(1)
B Dispersion function in terms of transfer matrix
125(1)
C Effect of dipole and quadrupole error on dispersion function
126(1)
IV.2 H-Function, Action, and Integral Representation
126(2)
IV.3 Momentum Compaction Factor
128(4)
A Transition energy and phase-slip factor
129(1)
B Phase stability of synchrotron motion
130(1)
C Effect of dispersion on the response matrix of the ORM
131(1)
IV.4 Dispersion Suppression and Dispersion Matching
132(2)
IV.5 Achromat Transport Systems
134(2)
IV.6 Transport Notation
136(1)
IV.7 Experimental Measurements of Dispersion Function
137(1)
IV.8 Transition Energy Manipulation
138(8)
A γT jump schemes
139(2)
B Flexible momentum compaction (FMC) lattices
141(5)
IV.9 Minimum (H) Modules
146(4)
Exercise
150(8)
V Chromatic Aberration
158(13)
V.1 Chromaticity Measurement and Correction
159(4)
A Chromaticity measurement
159(1)
B Chromatic correction
160(2)
C Nonlinear modeling from chromaticity measurement
162(1)
V.2 Nonlinear Effects of Chromatic Sextupoles
163(1)
V.3 Chromatic Aberration and Correction
163(5)
A Systematic chromatic half-integer stopband width
164(1)
B Chromatic stopband integrals of FODO cells
165(1)
C The chromatic stopband integral of insertions
166(1)
D Effect of the chromatic stopbands on chromaticity
166(1)
E Effect of sextupoles on the chromatic stopband integrals
167(1)
V.4 Lattice Design Strategy
168(1)
Exercise
169(2)
VI Linear Coupling
171(15)
VI.1 The Linear Coupling Hamiltonian
171(2)
VI.2 Effects of an Isolated Linear Coupling Resonance
173(4)
A Normal modes at a single linear coupling resonance
174(1)
B Resonance precessing frame and Poincare surface of section
174(1)
C Initial horizontal orbit
175(1)
D General linear coupling solution
176(1)
VI.3 Experimental Measurement of Linear Coupling
177(3)
VI.4 Linear Coupling Correction with Skew Quadrupoles
180(1)
VI.5 Linear Coupling Using Transfer Matrix Formalism
181(1)
Exercise
181(5)
VII Nonlinear Resonances
186(24)
VII.1 Nonlinear Resonances Driven by Sextupoles
186(7)
A Tracking methods
186(1)
B The leading order resonances driven by sextupoles
187(2)
C The third order resonance at 3vx = l
189(2)
D Experimental measurement of a 3vx = l resonance
191(1)
E Other 3rd-order resonances driven by sextupoles
192(1)
VII.2 Higher-Order Resonances
193(3)
VII.3 Nonlinear Detuning from Sextupoles and Octupoles
196(1)
VII.4 Betatron Tunes and Nonlinear Resonances
197(6)
A Emittance growth, beam loss and dynamic aperture
198(1)
B Tune diffusion rate and dynamic aperture
199(2)
C Space charge effects
201(2)
Exercise
203(7)
VIII Collective Instability and Landau Damping
210(14)
VIII.1 Impedance
210(3)
A Resistive wall impedance
210(1)
B Space-charge impedance
211(1)
C Broad-band impedance
212(1)
D Narrow-band impedance
212(1)
E Properties of the transverse impedance
212(1)
VIII.2 Transverse Wave Modes
213(1)
VIII.3 Effect of Wakefield on Transverse Wave
214(4)
A Beam with zero frequency spread
216(1)
B Beam with finite frequency spread
216(1)
C A model of collective motion
217(1)
VIII.4 Frequency Spread and Landau Damping
218(3)
A Landau damping
218(2)
B Solutions of dispersion integral with Gaussian distribution
220(1)
Exercise
221(3)
IX Synchro-Betatron Hamiltonian
224(5)
Exercise
228(1)
3 Synchrotron Motion 229(168)
I Longitudinal Equation of Motion
230(11)
I.1 The Synchrotron Hamiltonian
233(2)
I.2 The Synchrotron Mapping Equation
235(1)
I.3 Evolution of Synchrotron Phase-Space Ellipses
236(1)
I.4 Some Practical Examples
237(1)
I.5 Summary of Synchrotron Equations of Motion
237(1)
A Using t as independent variable
237(1)
B Using longitudinal distance s as independent variable
238(1)
Exercise
238(3)
II Adiabatic Synchrotron Motion
241(15)
II.1 Fixed Points
241(1)
II.2 Bucket Area
242(2)
II.3 Small-Amplitude Oscillations and Bunch Area
244(3)
A Gaussian beam distribution
244(1)
B Synchrotron motion in reference time coordinates
245(1)
C Approximate action-angle variables
246(1)
II.4 Small-Amplitude Synchrotron Motion at the UFP
247(1)
II.5 Synchrotron Motion for Large-Amplitude Particles
247(2)
A Stationary synchrotron motion
248(1)
B Synchrotron tune
248(1)
II.6 Experimental Tracking of Synchrotron Motion
249(2)
Exercise
251(5)
III RF Phase and Voltage Modulations
256(29)
III.1 Normalized Phase-Space Coordinates
256(3)
III.2 RF Phase Modulation and Parametric Resonances
259(5)
A Effective Hamiltonian near a parametric resonance
260(1)
B Dipole mode
260(2)
C Island tune
262(1)
D Separatrix of resonant islands
263(1)
III.3 Measurements of Synchrotron Phase Modulation
264(3)
A Sinusoidal rf phase modulation
264(1)
B Action angle derived from measurements
265(1)
C Poincare surface of section
266(1)
III.4 Effects of Dipole Field Modulation
267(8)
A Chaotic nature of parametric resonances
269(1)
B Observation of attractors
270(2)
C The hysteretic phenomena of attractors
272(1)
D Systematic property of parametric resonances
273(2)
III.5 RF Voltage Modulation
275(5)
A The equation of motion with rf voltage modulation
275(1)
B The perturbed Hamiltonian
276(1)
C Parametric resonances
277(1)
D Quadrupole mode
277(2)
E The separatrix
279(1)
F The amplitude dependent island tune of 2:1 parametric resonance
279(1)
III.6 Measurement of RF Voltage Modulation
280(2)
A Voltage modulation control loop
280(1)
B Observations of the island structure
281(1)
Exercise
282(3)
IV Nonadiabatic and Nonlinear Synchrotron Motion
285(15)
IV.1 Linear Synchrotron Motion Near Transition Energy
286(3)
A The asymptotic properties of the phase space ellipse
288(1)
B The Gaussian distribution function at transition energy
289(1)
1V.2 Nonlinear Synchrotron Motion γ is approximately equal to γT
289(3)
IV.3 Beam Manipulation Near Transition Energy
292(1)
A Transition energy jump
292(1)
B Momentum aperture for faster beam acceleration
292(1)
C Flatten the rf wave near transition energy
292(1)
IV.4 Synchrotron Motion with Nonlinear Phase Slip Factor
293(2)
IV.5 The QI Dynamical Systems
295(4)
Exercise
299(1)
V Beam Manipulation in Synchrotron Phase Space
300(30)
V.1 RF Frequency Requirements
301(2)
A The choice of harmonic number
302(1)
B The choice of rf voltage
302(1)
V.2 Capture and Acceleration of Proton and Ion Beams
303(2)
A Adiabatic capture
303(1)
B Non-adiabatic capture
303(2)
C Chopped beam at the source
305(1)
V.3 Bunch Compression and Rotation
305(4)
A Bunch compression by rf voltage manipulation
306(1)
B Bunch compression using unstable fixed point
307(1)
C Bunch rotation using buncher/debuncher cavity
308(1)
V.4 Debunching
309(1)
V.5 Beam Stacking and Phase Displacement Acceleration
309(1)
V.6 Double rf Systems
310(7)
A Synchrotron equation of motion in a double rf system
311(1)
B Action and synchrotron tune
312(1)
C The r < or equal to 0.5 case
312(1)
D The r > 0.5 case
313(1)
E Action-angle coordinates
314(2)
F Sill amplitude approximation
316(1)
G Sum'rule theorem and collective instabilities
316(1)
V.7 The Barrier RF Bucket
317(6)
A Equation of motion in a barrier bucket
318(1)
B Synchrotron Hamiltonian for general rf wave form
319(1)
C Square wave barrier bucket
319(2)
D Hamiltonian formalism
321(1)
E Action-angle coordinates
322(1)
V.8 Beam-stacking in Longitudinal Phase space
323(3)
Exercise
326(4)
VI Fundamentals of RF Systems
330(18)
VI.1 Pillbox Cavity
330(2)
VI.2 Low Frequency Coaxial Cavities
332(7)
A Shunt impedance and Q-factor
334(2)
B Filling time
336(1)
C Qualitative feature of rf cavities
336(1)
D The rf cavity of the IUCF cooler injector synchrotron
337(2)
E Wake-function and impedance of an RLC resonator model
339(1)
VI.3 Beam Loading
339(3)
A Phasor
340(1)
B Fundamental theorem of beam loading
340(1)
C Steady state solution of multiple bunch passage
341(1)
VI.4 Beam Loading Compensation and Robinson Instability
342(3)
A Robinson dipole mode instability
343(1)
B Qualitative feature of Robinson instability
344(1)
Exercise
345(3)
VII Longitudinal Collective Instabilities
348(19)
VII.1 Beam Spectra of Synchrotron Motion
349(5)
A Coherent synchrotron modes
349(2)
B Coherent synchrotron modes of a kicked beam
351(1)
C Measurements of coherent synchrotron modes
352(2)
VII.2 Collective Microwave Instability in Coasting Beams
354(1)
VII.3 Longitudinal Impedance
355(3)
A Space-charge impedance
355(2)
B Resistive wall impedance
357(1)
C Narrowband and broadband impedance
358(1)
VII.4 Single Bunch Microwave Instability
358(7)
A Negative mass instability without momentum spread
358(1)
B Landau damping with finite frequency spread
359(1)
C Keil-Schnell criterion
360(2)
D Microwave instability near transition energy
362(1)
E Microwave instability and bunch lengthening
363(1)
F Microwave instability induced by narrowband resonances
364(1)
Exercise
365(2)
VIII Introduction to Linear Accelerators
367(30)
VIII.1 Historical Milestones
367(3)
VIII.2 Fundamental Properties of Accelerating Structures
370(2)
A Transit time factor
370(1)
B Shunt impedance
371(1)
C The quality factor Q
371(1)
VIII.3 Particle Acceleration by EM Waves
372(11)
A EM waves in a cylindrical wave guide
373(1)
B Phase velocity and group velocity
374(1)
C TM modes in a cylindrical pillbox cavity
375(2)
D Alvarez structure
377(1)
E Loaded wave guide chain and the space harmonics
378(3)
F Standing wave, traveling wave, and coupled cavity linacs
381(2)
G High Order Modes (HOMs)
383(1)
VIII.4 Longitudinal Particle Dynamics in a Linac
383(4)
A The capture condition in an electron linac with vp = c
384(1)
B Energy spread of the beam
385(1)
C Synchrotron motion in proton linacs
386(1)
VIII.5 Transverse Beam Dynamics in a Linac
387(3)
Exercise
390(7)
4 Physics of Electron Storage Rings 397(78)
I Fields of a Moving Charged Particle
401(14)
I.1 Non-relativistic Reduction
403(1)
I.2 Radiation Field for Particles at Relativistic Velocities
403(2)
Example 1: linac
404(1)
Example 2: Radiation from circular motion
404(1)
I.3 Frequency and Angular Distribution
405(6)
A Frequency spectrum of synchrotron radiation
407(2)
B Asymptotic property of the radiation
409(1)
C Angular distribution in the orbital plane
409(1)
D Angular distribution for the integrated energy spectrum
409(1)
E Frequency spectrum of radiated energy flux
410(1)
I.4 Quantum Fluctuation
411(2)
Exercise
413(2)
II Radiation Damping and Excitation
415(28)
II.1 Damping of Synchrotron Motion
415(4)
II.2 Damping of Betatron Motion
419(3)
A Transverse (vertical) betatron motion
419(1)
B Horizontal betatron motion
420(2)
II.3 Damping Rate Adjustment
422(3)
A Incease U to increase damping rate (damping wiggler)
422(1)
B Change D to re-partition the partition number
422(2)
C Robinson wiggler
424(1)
II.4 Radiation Excitation and Equilibrium Energy Spread
425(4)
A Effects of quantum excitation
425(1)
B Equilibrium rms energy spread
426(2)
C Adjustment of rms momentum spread
428(1)
D Beam distribution function in momentum
428(1)
II.5 Radial Bunch Width and Distribution Function
429(2)
II.6 Vertical Beam Width
431(1)
II.7 Beam Lifetime
432(5)
A Quantum lifetime
432(2)
B Touschek lifetime
434(3)
II.8 Summary: Radiation Integrals
437(1)
Exercise
438(5)
III Emittance in Electron Storage Rings
443(32)
III.1 Emittance of Synchrotron Radiation Lattices
443(13)
A FODO cell lattice
444(3)
B Double-bend achromat (Chasman-Green lattice)
447(3)
C Theoretical Minimum Emittance (TME) lattice
450(1)
D Three-bend achromat
451(1)
E Summary of Lattice Properties and QBA
452(2)
F Design concepts of recent light source upgrades
454(2)
III.2 Insertion Devices
456(5)
A Ideal helical undulators or wigglers
457(3)
B Characteristics of radiation from undulators
460(1)
III.3 Effect of IDs on beam dynamics
461(5)
A Effect of IDs on beam emittances
462(1)
B Effect of IDs on momentum spread
463(1)
C Effect of ID induced dispersion functions
463(2)
D Effect of IDs on the betatron tunes
465(1)
III.4 Beam Physics of High Brightness Storage Rings
466(3)
Exercise
469(6)
5 Special Topics in Beam Physics 475(26)
I Free Electron Laser (FEL)
476(12)
I.1 Small Signal Regime
478(5)
A Vlasov equation in longitudinal phase-space coordinates
479(2)
B The free electron laser gain
481(2)
I.2 Interaction of the Radiation Field with the Beam
483(3)
A Perturbation solution of the Maxwell-Vlasov equations
483(1)
B High gain regime
484(2)
I.3 High Gain FEL Facilities
486(1)
Exercise
486(2)
II Beam-Beam Interaction
488(13)
II.1 The Beam-Beam Force in Round Beam Geometry
488(3)
A The beam-beam potential
489(1)
B Dynamics betatron amplitude functions
489(1)
C Disruption factor
490(1)
II.2 The Coherent Beam-Beam Effects
491(1)
II.3 Nonlinear Beam-Beam Effects
491(2)
II.4 Experimental Observations and Numerical Simulations
493(4)
II.5 Beam-Beam Interaction in Linear Colliders
497(1)
Exercise
498(3)
A Classical Mechanics and Analysis 501(10)
I Hamiltonian Dynamics
501(3)
I.1 Canonical Transformations
501(1)
I.2 Fixed Points
502(1)
I.3 Poisson Bracket
502(1)
I.4 Liouville Theorem
502(1)
I.5 Floquet Theorem
503(1)
II Stochastic Beam Dynamics
504(4)
II.1 Central Limit Theorem
504(1)
II.2 Langevin Equation of Motion
505(2)
A Random walk method
505(1)
B Other stochastic integration methods
506(1)
II.3 Fokker-Planck Equation
507(1)
III Methods of Data Analysis in Beam Physics
508(3)
B Numerical Methods and Physical Constants 511(14)
I Fourier Transform
511(3)
I.1 Nyquist Sampling Theorem
511(1)
I.2 Discrete Fourier Transform
512(1)
I.3 Digital Filtering
513(1)
I.4 Some Simple Fourier Transforms
514(1)
II Cauchy Theorem and the Dispersion Relation
514(1)
II.1 Cauchy Integral Formula
514(1)
II.2 Dispersion Relation
515(1)
III Useful Handy Formulas
515(3)
III.1 Generating Functions for Bessel Functions
515(1)
III.2 The Hankel Transform
516(1)
III.3 The Complex Error Function [ 30]
516(1)
III.4 A Multipole Expansion Formula
516(1)
III.5 Cylindrical Coordinates
516(1)
III.6 Gauss' and Stokes' Theorems
517(1)
III.7 Vector Operation
517(1)
III.8 2D Magnetic Field in Multipole Expansion
518(1)
IV Maxwell's Equations
518(3)
IV.1 Lorentz Transformation of EM Fields
519(1)
IV.2 Cylindrical Waveguides
519(2)
A TM modes: HS = 0
519(1)
B TE modes: ES = 0
520(1)
IV.3 Voltage Standing Wave Ratio
521(1)
V Physical Properties and Constants
521(4)
Bibliography 525(2)
Index 527