Atjaunināt sīkdatņu piekrišanu

Access, Fronthaul and Backhaul Networks for 5G & Beyond [Hardback]

Edited by (University of Glasgow, School of Engineering, UK), Edited by (University of the West of Scotland (UWS), School of Engineering and Computing, UK), Edited by (University of Leeds, School of Electronic and Electrical Engineering, UK)
  • Formāts: Hardback, 584 pages, height x width: 234x156 mm
  • Sērija : Telecommunications
  • Izdošanas datums: 15-Sep-2017
  • Izdevniecība: Institution of Engineering and Technology
  • ISBN-10: 1785612131
  • ISBN-13: 9781785612138
  • Hardback
  • Cena: 160,05 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 584 pages, height x width: 234x156 mm
  • Sērija : Telecommunications
  • Izdošanas datums: 15-Sep-2017
  • Izdevniecība: Institution of Engineering and Technology
  • ISBN-10: 1785612131
  • ISBN-13: 9781785612138
This book provides an overview from both academic and industrial stakeholders of innovative backhaul/fronthaul solutions, covering a wide spectrum of underlying themes ranging from the recent thrust in edge caching for backhaul relaxation to mmWave based fronthauling for radio access networks.

The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic, which will continue due to the emerging need to connect people, machines, and applications in an ubiquitous manner through the mobile infrastructure. In achieving these expectations, operators and carriers are planning to improve the user experience and the overall network performance. However, the efficient and satisfactory operation of all these densely-deployed networks hinges on a suitable backhaul and fronthaul provisioning. The research community is working against an extremely tight timeline to provide innovative technologies with extensive performance evaluation metrics along with the required standardization milestones, hardware, and components for a fully deployed network by 2020 and beyond.Access, Fronthaul and Backhaul Networks for 5G & Beyond provides an overview from both academic and industrial stakeholders of innovative backhaul/fronthaul solutions, covering a wide spectrum of underlying themes ranging from the recent thrust in edge caching for backhaul relaxation to mmWave based fronthauling for radio access networks. With 20 chapters from leading international researchers in the field, this book is essential reading for engineers, researchers, designers, architects, technicians, students, and service providers in the field of networking and mobile, wireless, and computing technologies working towards the deployment of 5G networks.
About the editors xv
Preface xvii
Part I Access Network 1(200)
1 Network densification
3(22)
Van Minh Nguyen
Abstract
3(1)
1.1 Introduction
3(1)
1.2 Modeling methodology
4(6)
1.2.1 Pathloss modeling
5(2)
1.2.2 Channel power modeling
7(1)
1.2.3 Network modeling
8(1)
1.2.4 User association modeling
9(1)
1.2.5 Notation
10(1)
1.3 User performance scaling laws
10(8)
1.4 Network performance scaling laws
18(1)
1.5 Network ordering
19(1)
1.6 Summary
20(2)
Appendix A
22(1)
A.1 Regular variation
22(1)
A.2 Stochastic ordering
22(1)
References
23(2)
2 Massive and network MIMO
25(22)
Yunfei Chen
2.1 Introduction
25(2)
2.2 Benefits of massive MIMO
27(4)
2.2.1 Point-to-point MIMO
27(1)
2.2.2 Massive MIMO
28(3)
2.3 Techniques in massive MIMO
31(6)
2.3.1 Channel estimation in uplink
32(1)
2.3.2 Detection in uplink
33(3)
2.3.3 Precoding in downlink
36(1)
2.4 Issues in massive MIMO
37(4)
2.4.1 Pilot contamination
38(2)
2.4.2 Channel reciprocity
40(1)
2.4.3 Favorable propagation
40(1)
2.5 Network MIMO
41(3)
2.6 Conclusion
44(1)
References
44(3)
3 The role of massive MIMO in 5G access networks: potentials, challenges, and solutions
47(32)
Nassar Ksairi
Marco Maso
Beatrice Tomasi
Abstract
47(1)
3.1 Introduction
48(1)
3.2 The role of MIMO techniques in access networks
49(6)
3.2.1 Multiuser MIMO
49(3)
3.2.2 From MU MIMO to massive (MU) MIMO
52(1)
3.2.3 Benefits and potentials of massive MIMO
53(2)
3.2.4 System level implications
55(1)
3.3 CSI acquisition for massive MIMO
55(20)
3.3.1 CSI acquisition with channel reciprocity: massive MIMO for TDD cellular systems
56(12)
3.3.2 CSI acquisition without channel reciprocity: massive MIMO for frequency-division duplexing (FDD) cellular systems
68(7)
References
75(4)
4 Towards a service-oriented dynamic TDD for 5G networks
79(18)
Rudraksh Shrivastava
Konstantinos Samdanis
David Grace
4.1 Introduction
80(1)
4.2 Enabling technologies for the emerging 5G TDD systems
81(1)
4.3 TD-LTE state of the art
82(4)
4.3.1 Overview of TD-LTE
82(2)
4.3.2 Dynamic TDD
84(2)
4.4 TD-LTE virtual cells
86(2)
4.5 Network virtualization and multitenancy in 5G TDD networks
88(5)
4.5.1 A flexible FDD/TDD coexistence in a multitenant environment
89(2)
4.5.2 5G TDD network slicing
91(2)
4.6 Conclusions
93(1)
References
94(3)
5 Traffic aware scheduling for interference mitigation in cognitive femtocells
97(22)
Ghazanfar Ali Safdar
5.1 Introduction
97(3)
5.2 Traffic aware scheduling algorithm (SA)
100(4)
5.2.1 SA cross-tier interference mitigation
101(1)
5.2.2 SA co-tier interference mitigation
102(2)
5.3 System model
104(1)
5.4 Fading modelling
104(3)
5.4.1 Claussen fading
104(2)
5.4.2 Multi-path fading
106(1)
5.5 Performance analysis
107(8)
5.5.1 Cross-tier interference mitigation (no fading)
107(2)
5.5.2 Cross-tier interference mitigation (with fading)
109(5)
5.5.3 Co-tier interference mitigation
114(1)
5.6 Summary
115(1)
References
116(3)
6 5G radio access for the Tactile Internet
119(20)
M. Simsek
A. Aijaz
M. Dohler
G. Fettweis
Abstract
119(1)
6.1 Introduction
119(1)
6.2 Architecture and requirements
120(3)
6.3 5G Radio access network
123(1)
6.4 Tactile Internet design challenges
124(1)
6.5 Addressing Tactile Internet RAN design challenges
125(9)
6.5.1 Reliability
125(4)
6.5.2 Latency
129(1)
6.5.3 Edge intelligence
130(2)
6.5.4 Radio resource management
132(2)
6.6 Conclusion
134(1)
References
134(5)
7 Fronthauling for 5G and beyond
139(30)
Anvar Tukmanov
Maria A. Lema
Ian Mings
Massimo Condoluci
Toktam Mahmoodi
Zaid Al-Daher
Mischa Dohler
7.1 RAN functional split options
142(5)
7.1.1 Splitting RAN air interface protocols
142(2)
7.1.2 PDCP-RLC split
144(1)
7.1.3 RLC-MAC split
145(1)
7.1.4 Split MAC
145(1)
7.1.5 MAC-PHY split
146(1)
7.1.6 PHY split: FEC performed at CU
146(1)
7.1.7 PHY split: modulation performed at CU
147(1)
7.2 Radio access network technologies, architecture and backhaul options
147(9)
7.2.1 Modern network architecture
147(4)
7.2.2 5G technologies and use cases
151(4)
7.2.3 Practical backhaul technologies
155(1)
7.3 Current fronthaul solutions
156(4)
7.3.1 CPRI in C-RAN
156(1)
7.3.2 CPRI compression
157(1)
7.3.3 Fronthaul or midhaul over ethernet
157(1)
7.3.4 C-RAN integration in 5G: feasibility discussion
158(2)
7.4 Market direction and real-world RAN split examples
160(6)
7.4.1 Mobile backhaul
160(1)
7.4.2 Centralised or Cloud RAN
160(3)
7.4.3 Forward view to 5G
163(1)
7.4.4 Industry 5G fronthaul initiatives
163(1)
7.4.5 Split MAC trials
164(2)
7.5 Conclusion
166(1)
References
166(3)
8 Interference management and resource allocation in backhaul/access networks
169(32)
L. Zhang
E. Pateromichelakis
A. Quddus
Abstract
169(1)
8.1 Introduction
170(1)
8.2 Optimal cooperative cluster size
171(15)
8.2.1 System model
171(5)
8.2.2 Desired signal and interference power
176(2)
8.2.3 Cluster size optimization
178(3)
8.2.4 Discussion on backhaul load
181(1)
8.2.5 Ergodic sum-rate and optimization formulation
181(1)
8.2.6 Simulation results
182(4)
8.3 Joint routing and backhaul scheduling
186(6)
8.3.1 System model
186(3)
8.3.2 Problem formulation
189(2)
8.3.3 Simulation results
191(1)
8.4 Evaluation of the joint backhaul and access link design
192(3)
8.5 Conclusions
195(2)
Acknowledgements
197(1)
References
197(4)
Part II Fronthaul Networks 201(48)
9 Self-organised fronthauling for 5G and beyond
203(28)
Mona Jaber
Muhammad Ali Imran
Anvar Tukmanov
9.1 Introduction
203(3)
9.2 Merits of fronthauling
206(1)
9.2.1 Capital expenditures
206(1)
9.2.2 Operational expenditures
206(1)
9.2.3 How is C-RAN not DAS?
207(1)
9.3 Fronthaul solutions
207(8)
9.3.1 Wired solutions
208(4)
9.3.2 Wireless solutions
212(3)
9.4 The dark side of fronthauling
215(2)
9.4.1 Capital expenditures
215(1)
9.4.2 Operational expenditures
216(1)
9.5 The emergence of X-haul
217(6)
9.5.1 Functional split
217(2)
9.5.2 Which X-haul level to choose?
219(4)
9.6 Solving the X-haul challenge with SON
223(3)
9.6.1 Why SON for the fronthaul?
223(1)
9.6.2 State-of-the-art SON for the X-haul
224(2)
9.7 Challenges of SON in the fronthaul
226(1)
Acknowledgements
226(1)
References
227(4)
10 NFV and SDN for fronthaul-based systems
231(18)
Maria A. Lema
Massimo Condoluci
Toktam Mahmoodi
Fragkiskos Sardis
Mischa Dohler
10.1 Introduction
231(1)
10.2 Background: NFV and SDN in research and standardisation
232(6)
10.2.1 Network functions virtualisation (NFV)
232(2)
10.2.2 Software Defined Networking
234(3)
10.2.3 Standardisation activities
237(1)
10.3 NFV: Virtualisation of C-RAN network functions
238(4)
10.3.1 Virtualisation as a flexible C-RAN enabler
238(2)
10.3.2 Virtualisation of the network functions
240(2)
10.4 SDN: Towards enhanced SON
242(3)
10.4.1 C/U-plane decoupling in the mobile network
242(1)
10.4.2 Software defined RAN controller
242(1)
10.4.3 Controlled network operations in C-RAN
243(2)
10.5 Conclusions
245(1)
References
245(4)
Part III Backhaul Network 249(138)
11 Mobile backhaul evolution: from GSM to LTE-Advanced
251(32)
Andy Sutton
Abstract
251(1)
11.1 Global system for mobile communications
252(1)
11.2 GSM network architecture
252(2)
11.3 GSM mobile backhaul
254(2)
11.4 Leased lines
256(2)
11.5 Self-provide microwave backhaul
258(2)
11.6 Planning the microwave backhaul transmission network
260(3)
11.7 Adding IP packet data to GSM
263(1)
11.8 Universal mobile telecommunications system
264(1)
11.9 UMTS mobile backhaul
265(2)
11.10 Planning the UMTS mobile backhaul network
267(3)
11.11 High-speed packet access
270(1)
11.12 Carrier Ethernet and pseudo-wires
270(2)
11.13 Long-term evolution
272(2)
11.14 LTE mobile backhaul
274(3)
11.15 Multi-RAT and multi-operator backhaul
277(1)
11.16 LTE-Advanced
278(1)
11.17 LTE-A backhaul
279(1)
11.18 Future RAN and backhaul evolution
279(1)
11.19 Conclusion
280(1)
Acknowledgement
280(1)
Further Reading
280(3)
12 Wired vs wireless backhaul
283(24)
Hirley Alves
Richard Demo Souza
Abstract
283(1)
12.1 Introduction
283(3)
12.1.1 Promising technologies for future wireless networks
284(1)
12.1.2 Challenges ahead
285(1)
12.2 Backhaul networks
286(14)
12.2.1 Wired solutions
288(5)
12.2.2 Wireless solutions
293(7)
12.3 Conclusion
300(2)
References
302(5)
13 Spectral coexistence for next generation wireless backhaul networks
307(30)
Shree Krishna Sharma
Eva Lagunas
Christos Tsinos
Sina Maleki
Symeon Chatzinotas
Bjorn Ottersten
13.1 Introduction
308(1)
13.2 Research trends in wireless backhaul
309(2)
13.3 Hybrid satellite-terrestrial backhaul
311(4)
13.3.1 Scenarios
311(3)
13.3.2 Benefits and challenges of HSTB
314(1)
13.4 Spectrum sharing in wireless backhaul networks
315(6)
13.4.1 Spectrum awareness techniques
315(2)
13.4.2 Spectrum exploitation techniques
317(4)
13.5 Case studies
321(8)
13.5.1 FSS-FS coexistence in the forward Link (17.7-19.7 GHz)
321(3)
13.5.2 FSS-FS coexistence in the return link (27.5-29.5 GHz)
324(2)
13.5.3 Satellite-terrestrial backhaul coexistence
326(3)
13.6 Future recommendations
329(1)
13.7 Conclusions
330(1)
Acknowledgments
331(1)
References
331(6)
14 Control data separation and its implications on backhaul networks
337(26)
Abdelrahim Mohamed
Oluwakayode Onireti
Muhammad Imran
Abstract
337(1)
14.1 Introduction
337(1)
14.2 RAN design in legacy standards
338(6)
14.2.1 Always-on design
340(1)
14.2.2 Worst-case design
341(2)
14.2.3 Distributed management design
343(1)
14.3 5G RAN with control/data separation
344(2)
14.3.1 On-demand always-available design
345(1)
14.3.2 Adaptive design
345(1)
14.3.3 Almost centralised management design
346(1)
14.4 Main challenge: backhaul networks
346(10)
14.4.1 Impact of separation schemes on data plane backhaul latency
347(8)
14.4.2 Impact of backhaul technology on energy efficiency
355(1)
14.4.3 Alternative backhaul mechanisms
356(1)
14.5 Conclusion
356(1)
Appendix A: Proof of lemma 14.1
357(1)
References
358(5)
15 Backhaul relaxation through caching
363(24)
Keivan Bahmani
Antonios Argyriou
Melike Erol-Kantarci
15.1 Background on content caching
364(5)
15.2 Caching in 5G wireless systems
369(6)
15.2.1 Caching in 5G HetNets
369(2)
15.2.2 QoE-aware caching & 5G HetNet configuration
371(3)
15.2.3 Caching in D2D 5G systems
374(1)
15.3 Energy efficiency and caching in 50 systems
375(5)
15.3.1 SER
376(1)
15.3.2 PCONT
377(1)
15.3.3 PREL
378(2)
15.4 Summary
380(1)
References
381(6)
Part IV System Integration and Case Studies 387(154)
16 SDN and edge computing: key enablers toward the 5G evolution
389(30)
Ali Hussein
Ola Salman
Sarah Abdallah
Imad Elhajj
Ali Chehab
Ayman Kayssi
Abstract
389(1)
16.1 Introduction (mobile network evolution toward 5G)
390(2)
16.2 50 enabling technologies
392(3)
16.2.1 Software-defined networking and network function virtualization
392(1)
16.2.2 Cloud and edge computing
393(2)
16.3 50 characteristics, challenges, and solutions
395(3)
16.3.1 5G requirements/challenges
395(1)
16.3.2 Proposed solutions
396(2)
16.4 Literature review
398(10)
16.4.1 SDN and NFV based 50 architectures
398(7)
16.4.2 Edge/cloud-based 50 architecture
405(3)
16.5 Proposed architecture
408(4)
16.6 Discussion
412(1)
16.7 Conclusion
413(1)
Acknowledgment
414(1)
References
414(5)
17 Low latency optical back- and front-hauling for 5G
419(42)
Pandelis Kourtessis
Milos Milosavljevic
Matthew Robinson
Abstract
419(1)
17.1 Introduction
420(5)
17.1.1 Key-enabling technologies and services
422(3)
17.2 CPRI over Ethernet mobile fronthauling
425(3)
17.3 QoE for video services
428(3)
17.4 CDN and local caching
431(3)
17.5 Software-enabled passive optical networks
434(2)
17.6 Enabling SDN-based high performance heterogeneous access networks
436(6)
17.7 Network implementation
442(12)
17.7.1 SDN-enabled SAT>IP delivery
443(7)
17.7.2 Real video transmission
450(4)
17.8 Network optimisation for SDN-enabled video delivery
454(2)
17.8.1 Video QoE feedback transmitter
454(1)
17.8.2 Video QoE reception by the SDN application
455(1)
17.8.3 Network optimisation using an SDN application
455(1)
17.8.4 FlowVisor network slicing
456(1)
17.9 LTE open-air interface
456(1)
17.10 Conclusions
456(2)
Acknowledgement
458(1)
References
458(3)
18 Fronthaul and backhaul integration (Crosshaul) for 5G mobile transport networks
461(34)
Xavier Costa-Perez
Antonia Paolicelli
Antonio de la Oliva
Fabio Cavaliere
Thomas Delft
Xi Li
Alain Mourad
18.1 Motivation and use cases for fronthaul and backhaul integration
461(7)
18.1.1 Motivation
461(1)
18.1.2 Use cases
462(6)
18.2 Architectural solutions and components
468(1)
18.3 5G-Crosshaul architecture
469(5)
18.3.1 Overview
469(2)
18.3.2 Main components
471(3)
18.4 Common framing and switching elements
474(6)
18.5 Control infrastructure
480(3)
18.5.1 XCI high-level architecture
480(1)
18.5.2 XCI SDN controller
481(2)
18.5.3 Deployment models of XCI
483(1)
18.6 Enabled applications
483(7)
18.6.1 Resource management application (RMA)
484(1)
18.6.2 Multi-tenancy application
484(2)
18.6.3 Energy management and monitoring application
486(2)
18.6.4 Mobility management application
488(1)
18.6.5 Content delivery network management application
489(1)
18.7 Standardization for the 5G-integrated fronthaul and backhaul
490(2)
Acknowledgement
492(1)
References
492(3)
19 Device-to-device communication for 5G
495(22)
Rafay Iqbal Ansari
Syed Ali Hassan
Chrysostomos Chrysostomou
Abstract
495(1)
19.1 Introduction
496(2)
19.1.1 Classification of D2D networks
496(1)
19.1.2 D2D network topologies
497(1)
19.2 Resource management
498(1)
19.3 Interference management
499(2)
19.3.1 Interference management (underlay D2D)
500(1)
19.3.2 Interference management (overlay D2D)
501(1)
19.4 Network discovery and proximity services
501(3)
19.4.1 Network discovery
501(1)
19.4.2 Proximity services
502(2)
19.5 Network security and trust
504(2)
19.6 Network coding
506(1)
19.7 Emerging aspects in D2D
507(4)
19.7.1 Millimetre wave (mmWave)
507(1)
19.7.2 Pricing and incentives
508(2)
19.7.3 Energy harvesting and SWIPT
510(1)
19.8 Conclusion
511(1)
References
512(5)
20 Coordinated multi-point for future networks: field trial results
517(24)
Selcuk Bassoy
Mohamed Aziz
Muhammad A. Imran
Abstract
517(1)
20.1 Introduction
518(1)
20.2 Motivation and benefits of CoMP - operator perspective
519(1)
20.3 What is CoMP and standardisation roadmap
519(6)
20.3.1 What is CoMP?
519(1)
20.3.2 Standardisation roadmap
520(1)
20.3.3 Types of CoMP
521(1)
20.3.4 Challenges of CoMP
522(3)
20.4 Operational requirements
525(1)
20.5 Uplink CoMP field trial for LTE-A
526(7)
20.5.1 Uplink CoMP introduction
526(1)
20.5.2 UL CoMP in trial area
527(1)
20.5.3 Trial performance results
527(6)
20.6 Evolution into 5G
533(2)
20.6.1 CoMP for improved spectral efficiency in 5G
533(1)
20.6.2 CoMP and backhaul bandwidth challenge in 5G
534(1)
20.6.3 CoMP for energy efficient 5G networks
534(1)
20.6.4 CoMP for cost effective load-aware 5G network
535(1)
20.7 Conclusions
535(1)
References
536(5)
Index 541
All three editors are active on the IEEE ComSoc emerging technical committee on backhaul/fronthaul networking and communications: Dr Shakir is Chair, Professor Imran is Vice Chair - UK & IR, and Dr Zaidi is Secretary.