About the editors |
|
xv | |
Preface |
|
xvii | |
Part I Access Network |
|
1 | (200) |
|
|
3 | (22) |
|
|
|
3 | (1) |
|
|
3 | (1) |
|
|
4 | (6) |
|
|
5 | (2) |
|
1.2.2 Channel power modeling |
|
|
7 | (1) |
|
|
8 | (1) |
|
1.2.4 User association modeling |
|
|
9 | (1) |
|
|
10 | (1) |
|
1.3 User performance scaling laws |
|
|
10 | (8) |
|
1.4 Network performance scaling laws |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | (2) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (2) |
|
2 Massive and network MIMO |
|
|
25 | (22) |
|
|
|
25 | (2) |
|
2.2 Benefits of massive MIMO |
|
|
27 | (4) |
|
2.2.1 Point-to-point MIMO |
|
|
27 | (1) |
|
|
28 | (3) |
|
2.3 Techniques in massive MIMO |
|
|
31 | (6) |
|
2.3.1 Channel estimation in uplink |
|
|
32 | (1) |
|
2.3.2 Detection in uplink |
|
|
33 | (3) |
|
2.3.3 Precoding in downlink |
|
|
36 | (1) |
|
2.4 Issues in massive MIMO |
|
|
37 | (4) |
|
2.4.1 Pilot contamination |
|
|
38 | (2) |
|
2.4.2 Channel reciprocity |
|
|
40 | (1) |
|
2.4.3 Favorable propagation |
|
|
40 | (1) |
|
|
41 | (3) |
|
|
44 | (1) |
|
|
44 | (3) |
|
3 The role of massive MIMO in 5G access networks: potentials, challenges, and solutions |
|
|
47 | (32) |
|
|
|
|
|
47 | (1) |
|
|
48 | (1) |
|
3.2 The role of MIMO techniques in access networks |
|
|
49 | (6) |
|
|
49 | (3) |
|
3.2.2 From MU MIMO to massive (MU) MIMO |
|
|
52 | (1) |
|
3.2.3 Benefits and potentials of massive MIMO |
|
|
53 | (2) |
|
3.2.4 System level implications |
|
|
55 | (1) |
|
3.3 CSI acquisition for massive MIMO |
|
|
55 | (20) |
|
3.3.1 CSI acquisition with channel reciprocity: massive MIMO for TDD cellular systems |
|
|
56 | (12) |
|
3.3.2 CSI acquisition without channel reciprocity: massive MIMO for frequency-division duplexing (FDD) cellular systems |
|
|
68 | (7) |
|
|
75 | (4) |
|
4 Towards a service-oriented dynamic TDD for 5G networks |
|
|
79 | (18) |
|
|
|
|
|
80 | (1) |
|
4.2 Enabling technologies for the emerging 5G TDD systems |
|
|
81 | (1) |
|
4.3 TD-LTE state of the art |
|
|
82 | (4) |
|
|
82 | (2) |
|
|
84 | (2) |
|
|
86 | (2) |
|
4.5 Network virtualization and multitenancy in 5G TDD networks |
|
|
88 | (5) |
|
4.5.1 A flexible FDD/TDD coexistence in a multitenant environment |
|
|
89 | (2) |
|
4.5.2 5G TDD network slicing |
|
|
91 | (2) |
|
|
93 | (1) |
|
|
94 | (3) |
|
5 Traffic aware scheduling for interference mitigation in cognitive femtocells |
|
|
97 | (22) |
|
|
|
97 | (3) |
|
5.2 Traffic aware scheduling algorithm (SA) |
|
|
100 | (4) |
|
5.2.1 SA cross-tier interference mitigation |
|
|
101 | (1) |
|
5.2.2 SA co-tier interference mitigation |
|
|
102 | (2) |
|
|
104 | (1) |
|
|
104 | (3) |
|
|
104 | (2) |
|
|
106 | (1) |
|
|
107 | (8) |
|
5.5.1 Cross-tier interference mitigation (no fading) |
|
|
107 | (2) |
|
5.5.2 Cross-tier interference mitigation (with fading) |
|
|
109 | (5) |
|
5.5.3 Co-tier interference mitigation |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
116 | (3) |
|
6 5G radio access for the Tactile Internet |
|
|
119 | (20) |
|
|
|
|
|
|
119 | (1) |
|
|
119 | (1) |
|
6.2 Architecture and requirements |
|
|
120 | (3) |
|
6.3 5G Radio access network |
|
|
123 | (1) |
|
6.4 Tactile Internet design challenges |
|
|
124 | (1) |
|
6.5 Addressing Tactile Internet RAN design challenges |
|
|
125 | (9) |
|
|
125 | (4) |
|
|
129 | (1) |
|
|
130 | (2) |
|
6.5.4 Radio resource management |
|
|
132 | (2) |
|
|
134 | (1) |
|
|
134 | (5) |
|
7 Fronthauling for 5G and beyond |
|
|
139 | (30) |
|
|
|
|
|
|
|
|
7.1 RAN functional split options |
|
|
142 | (5) |
|
7.1.1 Splitting RAN air interface protocols |
|
|
142 | (2) |
|
|
144 | (1) |
|
|
145 | (1) |
|
|
145 | (1) |
|
|
146 | (1) |
|
7.1.6 PHY split: FEC performed at CU |
|
|
146 | (1) |
|
7.1.7 PHY split: modulation performed at CU |
|
|
147 | (1) |
|
7.2 Radio access network technologies, architecture and backhaul options |
|
|
147 | (9) |
|
7.2.1 Modern network architecture |
|
|
147 | (4) |
|
7.2.2 5G technologies and use cases |
|
|
151 | (4) |
|
7.2.3 Practical backhaul technologies |
|
|
155 | (1) |
|
7.3 Current fronthaul solutions |
|
|
156 | (4) |
|
|
156 | (1) |
|
|
157 | (1) |
|
7.3.3 Fronthaul or midhaul over ethernet |
|
|
157 | (1) |
|
7.3.4 C-RAN integration in 5G: feasibility discussion |
|
|
158 | (2) |
|
7.4 Market direction and real-world RAN split examples |
|
|
160 | (6) |
|
|
160 | (1) |
|
7.4.2 Centralised or Cloud RAN |
|
|
160 | (3) |
|
|
163 | (1) |
|
7.4.4 Industry 5G fronthaul initiatives |
|
|
163 | (1) |
|
|
164 | (2) |
|
|
166 | (1) |
|
|
166 | (3) |
|
8 Interference management and resource allocation in backhaul/access networks |
|
|
169 | (32) |
|
|
|
|
|
169 | (1) |
|
|
170 | (1) |
|
8.2 Optimal cooperative cluster size |
|
|
171 | (15) |
|
|
171 | (5) |
|
8.2.2 Desired signal and interference power |
|
|
176 | (2) |
|
8.2.3 Cluster size optimization |
|
|
178 | (3) |
|
8.2.4 Discussion on backhaul load |
|
|
181 | (1) |
|
8.2.5 Ergodic sum-rate and optimization formulation |
|
|
181 | (1) |
|
|
182 | (4) |
|
8.3 Joint routing and backhaul scheduling |
|
|
186 | (6) |
|
|
186 | (3) |
|
8.3.2 Problem formulation |
|
|
189 | (2) |
|
|
191 | (1) |
|
8.4 Evaluation of the joint backhaul and access link design |
|
|
192 | (3) |
|
|
195 | (2) |
|
|
197 | (1) |
|
|
197 | (4) |
Part II Fronthaul Networks |
|
201 | (48) |
|
9 Self-organised fronthauling for 5G and beyond |
|
|
203 | (28) |
|
|
|
|
|
203 | (3) |
|
9.2 Merits of fronthauling |
|
|
206 | (1) |
|
9.2.1 Capital expenditures |
|
|
206 | (1) |
|
9.2.2 Operational expenditures |
|
|
206 | (1) |
|
9.2.3 How is C-RAN not DAS? |
|
|
207 | (1) |
|
|
207 | (8) |
|
|
208 | (4) |
|
|
212 | (3) |
|
9.4 The dark side of fronthauling |
|
|
215 | (2) |
|
9.4.1 Capital expenditures |
|
|
215 | (1) |
|
9.4.2 Operational expenditures |
|
|
216 | (1) |
|
9.5 The emergence of X-haul |
|
|
217 | (6) |
|
|
217 | (2) |
|
9.5.2 Which X-haul level to choose? |
|
|
219 | (4) |
|
9.6 Solving the X-haul challenge with SON |
|
|
223 | (3) |
|
9.6.1 Why SON for the fronthaul? |
|
|
223 | (1) |
|
9.6.2 State-of-the-art SON for the X-haul |
|
|
224 | (2) |
|
9.7 Challenges of SON in the fronthaul |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
227 | (4) |
|
10 NFV and SDN for fronthaul-based systems |
|
|
231 | (18) |
|
|
|
|
|
|
|
231 | (1) |
|
10.2 Background: NFV and SDN in research and standardisation |
|
|
232 | (6) |
|
10.2.1 Network functions virtualisation (NFV) |
|
|
232 | (2) |
|
10.2.2 Software Defined Networking |
|
|
234 | (3) |
|
10.2.3 Standardisation activities |
|
|
237 | (1) |
|
10.3 NFV: Virtualisation of C-RAN network functions |
|
|
238 | (4) |
|
10.3.1 Virtualisation as a flexible C-RAN enabler |
|
|
238 | (2) |
|
10.3.2 Virtualisation of the network functions |
|
|
240 | (2) |
|
10.4 SDN: Towards enhanced SON |
|
|
242 | (3) |
|
10.4.1 C/U-plane decoupling in the mobile network |
|
|
242 | (1) |
|
10.4.2 Software defined RAN controller |
|
|
242 | (1) |
|
10.4.3 Controlled network operations in C-RAN |
|
|
243 | (2) |
|
|
245 | (1) |
|
|
245 | (4) |
Part III Backhaul Network |
|
249 | (138) |
|
11 Mobile backhaul evolution: from GSM to LTE-Advanced |
|
|
251 | (32) |
|
|
|
251 | (1) |
|
11.1 Global system for mobile communications |
|
|
252 | (1) |
|
11.2 GSM network architecture |
|
|
252 | (2) |
|
|
254 | (2) |
|
|
256 | (2) |
|
11.5 Self-provide microwave backhaul |
|
|
258 | (2) |
|
11.6 Planning the microwave backhaul transmission network |
|
|
260 | (3) |
|
11.7 Adding IP packet data to GSM |
|
|
263 | (1) |
|
11.8 Universal mobile telecommunications system |
|
|
264 | (1) |
|
11.9 UMTS mobile backhaul |
|
|
265 | (2) |
|
11.10 Planning the UMTS mobile backhaul network |
|
|
267 | (3) |
|
11.11 High-speed packet access |
|
|
270 | (1) |
|
11.12 Carrier Ethernet and pseudo-wires |
|
|
270 | (2) |
|
11.13 Long-term evolution |
|
|
272 | (2) |
|
11.14 LTE mobile backhaul |
|
|
274 | (3) |
|
11.15 Multi-RAT and multi-operator backhaul |
|
|
277 | (1) |
|
|
278 | (1) |
|
|
279 | (1) |
|
11.18 Future RAN and backhaul evolution |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
280 | (1) |
|
|
280 | (3) |
|
12 Wired vs wireless backhaul |
|
|
283 | (24) |
|
|
|
|
283 | (1) |
|
|
283 | (3) |
|
12.1.1 Promising technologies for future wireless networks |
|
|
284 | (1) |
|
|
285 | (1) |
|
|
286 | (14) |
|
|
288 | (5) |
|
12.2.2 Wireless solutions |
|
|
293 | (7) |
|
|
300 | (2) |
|
|
302 | (5) |
|
13 Spectral coexistence for next generation wireless backhaul networks |
|
|
307 | (30) |
|
|
|
|
|
|
|
|
308 | (1) |
|
13.2 Research trends in wireless backhaul |
|
|
309 | (2) |
|
13.3 Hybrid satellite-terrestrial backhaul |
|
|
311 | (4) |
|
|
311 | (3) |
|
13.3.2 Benefits and challenges of HSTB |
|
|
314 | (1) |
|
13.4 Spectrum sharing in wireless backhaul networks |
|
|
315 | (6) |
|
13.4.1 Spectrum awareness techniques |
|
|
315 | (2) |
|
13.4.2 Spectrum exploitation techniques |
|
|
317 | (4) |
|
|
321 | (8) |
|
13.5.1 FSS-FS coexistence in the forward Link (17.7-19.7 GHz) |
|
|
321 | (3) |
|
13.5.2 FSS-FS coexistence in the return link (27.5-29.5 GHz) |
|
|
324 | (2) |
|
13.5.3 Satellite-terrestrial backhaul coexistence |
|
|
326 | (3) |
|
13.6 Future recommendations |
|
|
329 | (1) |
|
|
330 | (1) |
|
|
331 | (1) |
|
|
331 | (6) |
|
14 Control data separation and its implications on backhaul networks |
|
|
337 | (26) |
|
|
|
|
|
337 | (1) |
|
|
337 | (1) |
|
14.2 RAN design in legacy standards |
|
|
338 | (6) |
|
|
340 | (1) |
|
|
341 | (2) |
|
14.2.3 Distributed management design |
|
|
343 | (1) |
|
14.3 5G RAN with control/data separation |
|
|
344 | (2) |
|
14.3.1 On-demand always-available design |
|
|
345 | (1) |
|
|
345 | (1) |
|
14.3.3 Almost centralised management design |
|
|
346 | (1) |
|
14.4 Main challenge: backhaul networks |
|
|
346 | (10) |
|
14.4.1 Impact of separation schemes on data plane backhaul latency |
|
|
347 | (8) |
|
14.4.2 Impact of backhaul technology on energy efficiency |
|
|
355 | (1) |
|
14.4.3 Alternative backhaul mechanisms |
|
|
356 | (1) |
|
|
356 | (1) |
|
Appendix A: Proof of lemma 14.1 |
|
|
357 | (1) |
|
|
358 | (5) |
|
15 Backhaul relaxation through caching |
|
|
363 | (24) |
|
|
|
|
15.1 Background on content caching |
|
|
364 | (5) |
|
15.2 Caching in 5G wireless systems |
|
|
369 | (6) |
|
15.2.1 Caching in 5G HetNets |
|
|
369 | (2) |
|
15.2.2 QoE-aware caching & 5G HetNet configuration |
|
|
371 | (3) |
|
15.2.3 Caching in D2D 5G systems |
|
|
374 | (1) |
|
15.3 Energy efficiency and caching in 50 systems |
|
|
375 | (5) |
|
|
376 | (1) |
|
|
377 | (1) |
|
|
378 | (2) |
|
|
380 | (1) |
|
|
381 | (6) |
Part IV System Integration and Case Studies |
|
387 | (154) |
|
16 SDN and edge computing: key enablers toward the 5G evolution |
|
|
389 | (30) |
|
|
|
|
|
|
|
|
389 | (1) |
|
16.1 Introduction (mobile network evolution toward 5G) |
|
|
390 | (2) |
|
16.2 50 enabling technologies |
|
|
392 | (3) |
|
16.2.1 Software-defined networking and network function virtualization |
|
|
392 | (1) |
|
16.2.2 Cloud and edge computing |
|
|
393 | (2) |
|
16.3 50 characteristics, challenges, and solutions |
|
|
395 | (3) |
|
16.3.1 5G requirements/challenges |
|
|
395 | (1) |
|
16.3.2 Proposed solutions |
|
|
396 | (2) |
|
|
398 | (10) |
|
16.4.1 SDN and NFV based 50 architectures |
|
|
398 | (7) |
|
16.4.2 Edge/cloud-based 50 architecture |
|
|
405 | (3) |
|
16.5 Proposed architecture |
|
|
408 | (4) |
|
|
412 | (1) |
|
|
413 | (1) |
|
|
414 | (1) |
|
|
414 | (5) |
|
17 Low latency optical back- and front-hauling for 5G |
|
|
419 | (42) |
|
|
|
|
|
419 | (1) |
|
|
420 | (5) |
|
17.1.1 Key-enabling technologies and services |
|
|
422 | (3) |
|
17.2 CPRI over Ethernet mobile fronthauling |
|
|
425 | (3) |
|
17.3 QoE for video services |
|
|
428 | (3) |
|
17.4 CDN and local caching |
|
|
431 | (3) |
|
17.5 Software-enabled passive optical networks |
|
|
434 | (2) |
|
17.6 Enabling SDN-based high performance heterogeneous access networks |
|
|
436 | (6) |
|
17.7 Network implementation |
|
|
442 | (12) |
|
17.7.1 SDN-enabled SAT>IP delivery |
|
|
443 | (7) |
|
17.7.2 Real video transmission |
|
|
450 | (4) |
|
17.8 Network optimisation for SDN-enabled video delivery |
|
|
454 | (2) |
|
17.8.1 Video QoE feedback transmitter |
|
|
454 | (1) |
|
17.8.2 Video QoE reception by the SDN application |
|
|
455 | (1) |
|
17.8.3 Network optimisation using an SDN application |
|
|
455 | (1) |
|
17.8.4 FlowVisor network slicing |
|
|
456 | (1) |
|
17.9 LTE open-air interface |
|
|
456 | (1) |
|
|
456 | (2) |
|
|
458 | (1) |
|
|
458 | (3) |
|
18 Fronthaul and backhaul integration (Crosshaul) for 5G mobile transport networks |
|
|
461 | (34) |
|
|
|
|
|
|
|
|
18.1 Motivation and use cases for fronthaul and backhaul integration |
|
|
461 | (7) |
|
|
461 | (1) |
|
|
462 | (6) |
|
18.2 Architectural solutions and components |
|
|
468 | (1) |
|
18.3 5G-Crosshaul architecture |
|
|
469 | (5) |
|
|
469 | (2) |
|
|
471 | (3) |
|
18.4 Common framing and switching elements |
|
|
474 | (6) |
|
18.5 Control infrastructure |
|
|
480 | (3) |
|
18.5.1 XCI high-level architecture |
|
|
480 | (1) |
|
18.5.2 XCI SDN controller |
|
|
481 | (2) |
|
18.5.3 Deployment models of XCI |
|
|
483 | (1) |
|
18.6 Enabled applications |
|
|
483 | (7) |
|
18.6.1 Resource management application (RMA) |
|
|
484 | (1) |
|
18.6.2 Multi-tenancy application |
|
|
484 | (2) |
|
18.6.3 Energy management and monitoring application |
|
|
486 | (2) |
|
18.6.4 Mobility management application |
|
|
488 | (1) |
|
18.6.5 Content delivery network management application |
|
|
489 | (1) |
|
18.7 Standardization for the 5G-integrated fronthaul and backhaul |
|
|
490 | (2) |
|
|
492 | (1) |
|
|
492 | (3) |
|
19 Device-to-device communication for 5G |
|
|
495 | (22) |
|
|
|
Chrysostomos Chrysostomou |
|
|
|
495 | (1) |
|
|
496 | (2) |
|
19.1.1 Classification of D2D networks |
|
|
496 | (1) |
|
19.1.2 D2D network topologies |
|
|
497 | (1) |
|
|
498 | (1) |
|
19.3 Interference management |
|
|
499 | (2) |
|
19.3.1 Interference management (underlay D2D) |
|
|
500 | (1) |
|
19.3.2 Interference management (overlay D2D) |
|
|
501 | (1) |
|
19.4 Network discovery and proximity services |
|
|
501 | (3) |
|
|
501 | (1) |
|
19.4.2 Proximity services |
|
|
502 | (2) |
|
19.5 Network security and trust |
|
|
504 | (2) |
|
|
506 | (1) |
|
19.7 Emerging aspects in D2D |
|
|
507 | (4) |
|
19.7.1 Millimetre wave (mmWave) |
|
|
507 | (1) |
|
19.7.2 Pricing and incentives |
|
|
508 | (2) |
|
19.7.3 Energy harvesting and SWIPT |
|
|
510 | (1) |
|
|
511 | (1) |
|
|
512 | (5) |
|
20 Coordinated multi-point for future networks: field trial results |
|
|
517 | (24) |
|
|
|
|
|
517 | (1) |
|
|
518 | (1) |
|
20.2 Motivation and benefits of CoMP - operator perspective |
|
|
519 | (1) |
|
20.3 What is CoMP and standardisation roadmap |
|
|
519 | (6) |
|
|
519 | (1) |
|
20.3.2 Standardisation roadmap |
|
|
520 | (1) |
|
|
521 | (1) |
|
20.3.4 Challenges of CoMP |
|
|
522 | (3) |
|
20.4 Operational requirements |
|
|
525 | (1) |
|
20.5 Uplink CoMP field trial for LTE-A |
|
|
526 | (7) |
|
20.5.1 Uplink CoMP introduction |
|
|
526 | (1) |
|
20.5.2 UL CoMP in trial area |
|
|
527 | (1) |
|
20.5.3 Trial performance results |
|
|
527 | (6) |
|
|
533 | (2) |
|
20.6.1 CoMP for improved spectral efficiency in 5G |
|
|
533 | (1) |
|
20.6.2 CoMP and backhaul bandwidth challenge in 5G |
|
|
534 | (1) |
|
20.6.3 CoMP for energy efficient 5G networks |
|
|
534 | (1) |
|
20.6.4 CoMP for cost effective load-aware 5G network |
|
|
535 | (1) |
|
|
535 | (1) |
|
|
536 | (5) |
Index |
|
541 | |