Atjaunināt sīkdatņu piekrišanu

E-grāmata: Active Plasmonics and Tuneable Plasmonic Metamaterials

Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 137,94 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Presents contributions from world's leading authorities in plasmonics, covering active plasmonics from basic principles to the most recent breakthroughs"--

"This book, edited by two of the most respected researchers in plasmonics, gives an overview of the current state in plasmonics and plasmonic-based metamaterials, with an emphasis on active functionalities and an eye to future developments. This book is multifunctional, useful for newcomers and scientists interested in applications of plasmonics and metamaterials as well as for established researchers in this multidisciplinary area"--



This book, edited by two of the most respected researchers in plasmonics, gives an overview of the current state in plasmonics and plasmonic-based metamaterials, with an emphasis on active functionalities and an eye to future developments. This book is multifunctional, useful for newcomers and scientists interested in applications of plasmonics and metamaterials as well as for established researchers in this multidisciplinary area.

Preface xiii
Contributors xvii
1 Spaser, Plasmonic Amplification, and Loss Compensation 1(40)
Mark I. Stockman
1.1 Introduction to Spasers and Spasing
1(1)
1.2 Spaser Fundamentals
2(5)
1.2.1 Brief Overview of the Latest Progress in Spasers
5(2)
1.3 Quantum Theory of Spaser
7(15)
1.3.1 Surface Plasmon Eigenmodes and Their Quantization
7(2)
1.3.2 Quantum Density Matrix Equations (Optical Bloch Equations) for Spaser
9(2)
1.3.3 Equations for CW Regime
11(4)
1.3.4 Spaser operation in CW Mode
15(2)
1.3.5 Spaser as Ultrafast Quantum Nanoamplifier
17(1)
1.3.6 Monostable Spaser as a Nanoamplifier in Transient Regime
18(4)
1.4 Compensation of Loss by Gain and Spasing
22(11)
1.4.1 Introduction to Loss Compensation by Gain
22(1)
1.4.2 Permittivity of Nanoplasmonic Metamaterial
22(2)
1.4.3 Plasmonic Eigenmodes and Effective Resonant Permittivity of Metamaterials
24(1)
1.4.4 Conditions of Loss Compensation by Gain and Spasing
25(2)
1.4.5 Discussion of Spasing and Loss Compensation by Gain
27(2)
1.4.6 Discussion of Published Research on Spasing and Loss Compensations
29(4)
Acknowledgments
33(1)
References
33(8)
2 Nonlinear Effects in Plasmonic Systems 41(28)
Pavel Ginzburg
Meir Orenstein
2.1 Introduction
41(2)
2.2 Metallic Nonlinearities-Basic Effects and Models
43(6)
2.2.1 Local Nonlinearity-Transients by Carrier Heating
43(2)
2.2.2 Plasma Nonlinearity-The Ponderomotive Force
45(1)
2.2.3 Parametric Process in Metals
46(2)
2.2.4 Metal Damage and Ablation
48(1)
2.3 Nonlinear Propagation of Surface Plasmon Polaritons
49(6)
2.3.1 Nonlinear SPP Modes
50(1)
2.3.2 Plasmon Solitons
50(4)
2.3.3 Nonlinear Plasmonic Waveguide Couplers
54(1)
2.4 Localized Surface Plasmon Nonlinearity
55(7)
2.4.1 Cavities and Nonlinear Interactions Enhancement
56(2)
2.4.2 Enhancement of Nonlinear Vacuum Effects
58(2)
2.4.3 High Harmonic Generation
60(1)
2.4.4 Localized Field Enhancement Limitations
60(2)
2.5 Summary
62(1)
Acknowledgments
62(1)
References
62(7)
3 Plasmonic Nanorod Metamaterials as a Platform for Active Nanophotonics 69(36)
Gregory A. Wurtz
Wayne Dickson
Anatoly V. Zayats
Antony Murphy
Robert J. Pollard
3.1 Introduction
69(2)
3.2 Nanorod Metamaterial Geometry
71(1)
3.3 Optical Properties
72(10)
3.3.1 Microscopic Description of the Metamaterial Electromagnetic Modes
72(4)
3.3.2 Effective Medium Theory of the Nanorod Metamaterial
76(3)
3.3.3 Epsilon-Near-Zero Metamaterials and Spatial Dispersion Effects
79(3)
3.3.4 Guided Modes in the Anisotropic Metamaterial Slab
82(1)
3.4 Nonlinear Effects in Nanorod Metamaterials
82(7)
3.4.1 Nanorod Metamaterial Hybridized with Nonlinear Dielectric
84(1)
3.4.2 Intrinsic Metal Nonlinearity of Nanorod Metamaterials
85(4)
3.5 Molecular Plasmonics in Metamaterials
89(8)
3.6 Electro-Optical Effects in Plasmonic Nanorod Metamaterial Hybridized with Liquid Crystals
97(1)
3.7 Conclusion
98(1)
References
99(6)
4 Transformation Optics for Plasmonics 105(48)
Alexandre Aubry
John B. Pendry
4.1 Introduction
105(3)
4.2 The Conformal Transformation Approach
108(13)
4.2.1 A Set of Canonic Plasmonic Structures
109(1)
4.2.2 Perfect Singular Structures
110(4)
4.2.3 Singular Plasmonic Structures
114(5)
4.2.3.1 Conformal Mapping of Singular Structures
114(4)
4.2.3.2 Conformal Mapping of Blunt-Ended Singular Structures
118(1)
4.2.4 Resonant Plasmonic Structures
119(2)
4.3 Broadband Light Harvesting and Nanofocusing
121(6)
4.3.1 Broadband Light Absorption
121(2)
4.3.2 Balance between Energy Accumulation and Dissipation
123(2)
4.3.3 Extension to 3D
125(1)
4.3.4 Conclusion
126(1)
4.4 Surface Plasmons and Singularities
127(3)
4.4.1 Control of the Bandwidth with the Vertex Angle
127(2)
4.4.2 Effect of the Bluntness
129(1)
4.5 Plasmonic Hybridization Revisited with Transformation Optics
130(3)
4.5.1 A Resonant Behavior
131(1)
4.5.2 Nanofocusing Properties
132(1)
4.6 Beyond the Quasi-Static Approximation
133(9)
4.6.1 Conformal Transformation Picture
134(1)
4.6.2 Radiative Losses
135(2)
4.6.3 Fluorescence Enhancement
137(5)
4.6.3.1 Fluorescence Enhancement in the Near-Field of Nanoantenna
138(1)
4.6.3.2 The CT Approach
139(3)
4.7 Nonlocal effects
142(3)
4.7.1 Conformal Mapping of Nonlocality
142(1)
4.7.2 Toward the Physics of Local Dimers
143(2)
4.8 Summary and Outlook
145(1)
Acknowledgments
145(1)
References
145(8)
5 Loss Compensation and Amplification of Surface Plasmon Polaritons 153(18)
Pierre Berini
5.1 Introduction
153(1)
5.2 Surface Plasmon Waveguides
154(3)
5.2.1 Unidimensional Structures
154(2)
5.2.2 Bidimensional Structures
156(1)
5.2.3 Confinement-Attenuation Trade-Off
156(1)
5.2.4 Optical Processes Involving SPPs
157(1)
5.3 Single Interface
157(3)
5.3.1 Theoretical
157(1)
5.3.2 Experimental
158(2)
5.4 Symmetric Metal Films
160(3)
5.4.1 Gratings
160(1)
5.4.2 Theoretical
160(1)
5.4.3 Experimental
161(2)
5.5 Metal Clads
163(1)
5.5.1 Theoretical
164(1)
5.5.2 Experimental
164(1)
5.6 Other Structures
164(2)
5.6.1 Dielectric-Loaded SPP Waveguides
164(1)
5.6.2 Hybrid SPP Waveguide
165(1)
5.6.3 Nanostructures
166(1)
5.7 Conclusions
166(1)
References
167(4)
6 Controlling Light Propagation with Interfacial Phase Discontinuities 171(48)
Nanfang Yu
Mikhail A. Kats
Patrice Genevet
Francesco Aieta
Romain Blanchard
Guillaume Aoust
Zeno Gaburro
Federico Capasso
6.1 Phase Response of Optical Antennas
172(14)
6.1.1 Introduction
172(2)
6.1.2 Single Oscillator Model for Linear Optical Antennas
174(2)
6.1.3 Two-Oscillator Model for 2D Structures Supporting Two Orthogonal Plasmonic Modes
176(3)
6.1.4 Analytical Models for V-Shaped Optical Antennas
179(4)
6.1.5 Optical Properties of V-Shaped Antennas: Experiments and Simulations
183(3)
6.2 Application's of Phased Optical Antenna Arrays
186(27)
6.2.1 Generalized Laws of Reflection and Refraction: Meta-Interfaces with Phase Discontinuities
186(6)
6.2.2 Out-of-Plane Reflection and Refraction of Light by Meta-Interfaces
192(5)
6.2.3 Giant and Tuneable Optical Birefringence
197(3)
6.2.4 Vortex Beams Created by Meta-Interfaces
200(13)
References
213(6)
7 Integrated Plasmonic Detectors 219(24)
Pieter Neutens
Paul Van Dorpe
7.1 Introduction
219(2)
7.2 Electrical Detection of Surface Plasmons
221(15)
7.2.1 Plasmon Detection with Tunnel Junctions
221(1)
7.2.2 Plasmon-Enhanced Solar Cells
222(3)
7.2.3 Plasmon-Enhanced Photodetectors
225(7)
7.2.4 Waveguide-Integrated Surface Plasmon Polariton Detectors
232(4)
7.3 Outlook
236(1)
References
237(6)
8 Terahertz Plasmonic Surfaces for Sensing 243(18)
Stephen M. Hanham
Stefan A. Maier
8.1 The Terahertz Region for Sensing
244(1)
8.2 THz Plasmonics
244(1)
8.3 SPPs on Semiconductor Surfaces
245(2)
8.3.1 Active Control of Semiconductor Plasmonics
247(1)
8.4 SSPP on Structured Metal Surfaces
247(2)
8.5 THz Plasmonic Antennas
249(4)
8.6 Extraordinary Transmission
253(2)
8.7 THz Plasmons on Graphene
255(1)
References
256(5)
9 Subwavelength Imaging by Extremely Anisotropic Media 261(28)
Pavel A. Belov
9.1 Introduction to Canalization Regime of Subwavelength Imaging
261(3)
9.2 Wire Medium Lens at the Microwave Frequencies
264(5)
9.3 Magnifying and Demagnifying Lenses with Super-Resolution
269(3)
9.4 Imaging at the Terahertz and Infrared Frequencies
272(4)
9.5 Nanolenses Formed by Nanorod Arrays for the Visible Frequency Range
276(3)
9.6 Superlenses and Hyperlenses Formed by Multilayered Metal-Dielectric Nanostructures
279(5)
References
284(5)
10 Active and Tuneable Metallic Nanoslit Lenses 289
Satoshi Ishii
Xingjie Ni
Vladimir P. Drachev
Mark D. Thoreson
Vladimir M. Shalaev
Alexander V. Kildishev
10.1 Introduction
289(1)
10.2 Polarization-Selective Gold Nanoslit Lenses
290(5)
10.2.1 Design Concept of Gold Nanoslit Lenses
291(1)
10.2.2 Experimental Demonstration of Gold Nanoslit Lenses
292(3)
10.3 Metallic Nanoslit Lenses with Focal-Intensity Tuneability and Focal Length Shifting
295(6)
10.3.1 Liquid Crystal-Controlled Nanoslit Lenses
295(5)
10.3.2 Nonlinear Materials for Controlling Nanoslit Lenses
300(1)
10.4 Lamellar Structures with Hyperbolic Dispersion Enable Subwavelength Focusing with Metallic Nanoslits
301(12)
10.4.1 Active Lamellar Structures with Hyperbolic Dispersion
302(5)
10.4.2 Subwavelength Focusing with Active Lamellar Structures
307(1)
10.4.3 Experimental Demonstration of Subwavelength Diffraction
308(5)
10.5 Summary
313(1)
Acknowledgments
313(1)
References
313
ANATOLY V. ZAYATS, PhD, is Professor of Experimental Physics and the Head of the Experimental Biophysics and Nanotechnology Group at King's College London. He also leads the UK EPSRC research program on active plasmonics. He is a Fellow of the Institute of Physics, the Optical Society of America, and SPIE.

STEFAN MAIER, PhD, is the Co-Director of the Centre for Plasmonics and Metamaterials at Imperial College London. He was the recipient of the 2010 Sackler Prize in the Physical Sciences and the 2010 Paterson Medal of the Institute of Physics. A Fellow of the OSA and Institute of Physics, Dr. Maier has published over 130 journal articles in the area of nanoplasmonics, and is a frequent invited speaker at international conferences.