Atjaunināt sīkdatņu piekrišanu

E-grāmata: Active Radar Cross Section Reduction: Theory and Applications

  • Formāts: PDF+DRM
  • Izdošanas datums: 02-Mar-2015
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781316389362
  • Formāts - PDF+DRM
  • Cena: 110,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 02-Mar-2015
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781316389362

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book discusses the active and passive radar cross section (RCS) estimation and techniques to examine the low observable aerospace platforms. It begins with the fundamentals of RCS, followed by the dielectric, magnetic and metamaterials parameters of the constituent materials and then explains various methods and the emerging trends followed in this area of study. The RCS estimation of phased array including the mutual coupling effect is also presented in detail in the book. The active RCS reduction is carefully touched upon through the performance of phased arrays, sidelobe cancellers and mitigation of multipath effect. Providing information on various adaptive algorithms like least mean square (LMS), recursive least square (RLS) and weighted least square algorithms, the authors also mention the recent developments in the area of embedded antennas, conformal load bearing antenna, metamaterials and frequency selective surface (FSS) based RCS reduction.

Papildus informācija

This book discusses the active and passive radar cross section estimation and techniques to examine the low observable aerospace platforms.
List of Tables
ix
List of Figures
xi
List of Abbreviations
xxiii
Preface xxv
Acknowledgements xxvii
1 Introduction to Radar Cross Section Reduction
1(14)
1.1 Introduction
1(2)
1.2 The concept of target signatures
3(1)
1.3 Radar cross section of an aircraft
4(3)
1.3.1 Ray-tracing techniques
5(2)
1.4 RCS reduction
7(4)
1.4.1 RCS reduction by shaping
8(1)
1.4.2 RCS reduction by RAM
9(1)
1.4.3 Active RCS reduction
9(2)
1.5 Organisation of the book
11(2)
1.6 Conclusion
13(2)
References
13(2)
2 RAM Analysis for Low-Observable Platforms
15(50)
2.1 Introduction
15(1)
2.2 EM propagation in classical multilayered media
16(23)
2.2.1 Semi-infinite media
18(4)
2.2.2 Plane dielectric layer
22(4)
2.2.3 Multiple reflections/transmissions at the boundaries
26(5)
2.2.4 Lossy dielectric layer
31(3)
2.2.5 Arbitrary number of dielectric layers
34(5)
2.3 EM propagation in multilayered dielectric-metamaterial media
39(9)
2.3.1 Reflection behaviour for dielectric-metamaterial layers
41(5)
2.3.2 RF simulation inside a closed rectangular cavity
46(2)
2.4 Antireflection and high-reflection dielectric/metamaterial coatings
48(14)
2.4.1 EM propagation in a single slab
48(1)
2.4.2 EM propagation in a multilayered structure
49(2)
2.4.3 Antireflection coatings consisting of dielectrics
51(3)
2.4.4 Antireflection coatings consisting of metamaterials
54(7)
2.4.5 High-reflection coatings using dielectric and metamaterial
61(1)
2.5 Conclusion
62(3)
References
63(2)
3 Radar Cross Section of Phased Antenna Arrays
65(61)
3.1 Introduction
65(1)
3.2 Theoretical background
66(10)
3.2.1 Antenna scattering
68(2)
3.2.2 Formulation for antenna RCS
70(6)
3.3 A phased array with a series feed network
76(19)
3.3.1 RCS formulation with isotropic array elements
77(10)
3.3.2 RCS pattern analysis
87(8)
3.4 Phased array with parallel feed network
95(27)
3.4.1 RCS formulation with isotropic array elements
96(13)
3.4.2 RCS pattern analysis
109(13)
3.5 Conclusion
122(4)
References
124(2)
4 Active RCS Reduction in Phased Arrays
126(51)
4.1 Introduction
126(2)
4.2 Adaptive algorithms
128(30)
4.2.1 Least mean square algorithm
131(4)
4.2.2 Recursive least square algorithm
135(1)
4.2.3 Standard matrix inversion algorithm
136(3)
4.2.4 Weighted least square algorithm
139(14)
4.2.5 Linearly constrained least square algorithm
153(5)
4.3 Probe suppression in phased arrays
158(13)
4.3.1 Theoretical background
159(3)
4.3.2 Probe suppression with single desired source
162(2)
4.3.3 Probe suppression in the presence of simultaneous multiple desired signals
164(4)
4.3.4 Probe suppression in the presence of correlated signals
168(3)
4.4 Conclusion
171(6)
References
172(5)
5 Mutual Coupling Effects in Phased Arrays
177(39)
5.1 Introduction
177(1)
5.2 Theoretical background for mutual impedance
178(4)
5.3 Steady-state performance of dipole array with mutual coupling
182(31)
5.3.1 Side-by-side dipole array
185(9)
5.3.2 Parallel-in-echelon array
194(19)
5.4 Conclusion
213(3)
References
214(2)
6 RCS of Dipole Array Including Mutual Coupling Effects
216(29)
6.1 Introduction
216(1)
6.2 Formulation for the RCS of series-fed dipole array
217(3)
6.3 Impedance at different levels of the feed network
220(2)
6.3.1 Impedance at the terminals of the dipole antenna
220(2)
6.3.2 Impedance at the terminals of the phase-shifters
222(1)
6.3.3 Impedance at the coupler terminals
222(1)
6.4 Scattering contributions from different components of the feed network
222(20)
6.4.1 RCS component due to scattering from dipoles
223(1)
6.4.2 RCS component due to scattering from the phase-shifters
224(2)
6.4.3 RCS component due to scattering from the coupling port of the couplers
226(1)
6.4.4 RCS component due to scattering beyond the coupling port of couplers
226(16)
6.5 Conclusion
242(3)
References
243(2)
7 Performance of Sidelobe Cancellers in Active RCSR
245(23)
7.1 Introduction
245(1)
7.2 Generalised sidelobe canceller (GSC)
246(4)
7.3 Decision feedback-generalised sidelobe canceller (DF--GSC)
250(1)
7.4 Performance analysis
251(3)
7.5 Direction of arrival (DOA) mismatch
254(1)
7.5.1 Mismatch signal model
254(1)
7.5.2 DOA mismatch with GSC
254(1)
7.5.3 DOA mismatch with DF--GSC
255(1)
7.6 Constraints in adaptive array processing
255(4)
7.6.1 Point constraints
256(1)
7.6.2 Derivative constraints
256(1)
7.6.3 Directional constraints
256(1)
7.6.4 Simulation results
257(2)
7.7 Blind equalisation in sidelobe cancellers
259(6)
7.7.1 Theoretical background
259(1)
7.7.2 Steps of algorithm
259(6)
7.8 Conclusion
265(3)
References
266(2)
8 Emerging RCSR Techniques
268(15)
8.1 Introduction
268(1)
8.2 Embedded antennas
269(3)
8.3 Conformal load-bearing antenna
272(2)
8.4 FSS-based RCSR
274(1)
8.5 Metamaterial-based RCSR
275(2)
8.6 Plasma-based RCSR
277(1)
8.7 Conclusion
278(5)
References
278(5)
Epilogue
283(2)
Appendices
285(14)
Appendix A Calculation of self and mutual impedance between two antennas
285(5)
Appendix B Calculation of mutual impedance between two antennas of unequal lengths
290(5)
Appendix C Self and mutual impedance of dipole array
295(2)
Appendix D Coupling and transmission coefficients: Formulation
297(2)
List of Symbols 299(6)
Suggestions for Further Reading 305(6)
Author Index 311(8)
Subject Index 319
Hema Singh has worked as a Senior Scientist in the Centre for Electromagnetics, CSIR-National Aerospace Laboratories, Bangalore, India since January 2005. She obtained her PhD degree in Electronics Engineering from the Institute of Technology (IT-BHU), Banaras Hindu University, India. Her active areas of research and teaching interests are Computational Electromagnetics for Aerospace Applications and RF and Microwaves. Dr Singh received the Best Woman Scientist Award in CSIR-National Aerospace Laboratories, Bangalore in 2008 for her contribution in the areas of phased antenna array, adaptive arrays and active RCS reduction. Rakesh Mohan Jha is currently working as Chief Scientist and Head, Centre for Electromagnetics, CSIR-National Aerospace Laboratories, Bangalore. He obtained his PhD (Engg.) degree from the Department of Aerospace Engineering at the Indian Institute of Science, Bangalore in 1989 in the area of Computational Electromagnetics for Aerospace Applications. Dr Jha was a SERC (UK) Visiting Post-Doctoral Research Fellow for one year at Oxford University, Department of Engineering Science in 1991. He worked as an Alexander von Humboldt (AvH) Fellow at the Institute for High Frequency Techniques and Electronics, University of Karlsruhe, Germany in 19923 and more recently in 2007 on AvH Reinvitation. He was awarded the Sir C. V. Raman Award for Aerospace Engineering for the Year 1999. Dr Jha was elected Fellow of INAE (FNAE) in 2010 for his contributions to the EM Applications to Aerospace Engineering. Dr Jha has published a number of research papers in international journals.