Atjaunināt sīkdatņu piekrišanu

E-grāmata: Actuarial Loss Models: A Concise Introduction

(University of Connecticut, U.S.A)
  • Formāts - PDF+DRM
  • Cena: 85,15 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Actuarial loss models are statistical models used by insurance companies to estimate the frequency and severity of future losses, set premiums, and reserve funds to cover potential claims. Actuarial loss models are a subject in actuarial mathematics that focus on the pricing and reserving for short-term coverages. This is a concise textbook written for undergraduate students majoring in actuarial science who wish to learn the basics of actuarial loss models. This book can be used as a textbook for a one-semester course on actuarial loss models. The prerequisite for this book is a first course on calculus. The reader is supposed to be familiar with differentiation and integration. This book covers part of the learning outcomes of the Fundamentals of Actuarial Mathematics (FAM) exam and the Advanced Short-Term Actuarial Mathematics (ASTAM) exam administered by the Society of Actuaries. It can be used by actuarial students and practitioners who prepare for the aforementioned actuarial exams"--

This book covers part of the learning outcomes of the Fundamentals of Actuarial Mathematics (FAM) exam and the Advanced Short-Term Actuarial Mathematics (ASTAM) exam administered by the Society of Actuaries. It can be used by students and practitioners who prepare for actuarial exams.



Actuarial loss models are statistical models used by insurance companies to estimate the frequency and severity of future losses, set premiums, and reserve funds to cover potential claims. Actuarial loss models are a subject in actuarial mathematics that focus on the pricing and reserving for short-term coverages.

This is a concise textbook written for undergraduate students majoring in actuarial science who wish to learn the basics of actuarial loss models. This book can be used as a textbook for a one-semester course on actuarial loss models. The prerequisite for this book is a first course on calculus. The reader is supposed to be familiar with differentiation and integration.

This book covers part of the learning outcomes of the Fundamentals of Actuarial Mathematics (FAM) exam and the Advanced Short-Term Actuarial Mathematics (ASTAM) exam administered by the Society of Actuaries. It can be used by actuarial students and practitioners who prepare for the aforementioned actuarial exams.

Key Features:

  • Review core concepts in probability theory.
  • Cover important topics in actuarial loss models.
  • Include worked examples.
  • Provide both theoretical and numerical exercises.
  • Include solutions of selected exercises.

Preface
1. Probability Theory
2. Frequency Models
3. Severity Models
4. Aggregate Loss Models
5. Coverage Modifications
6. Model Estimation
7. Model Selection
8. Credibility Models
9. Risk Measures A. Useful Results from Calculus B. Special Functions C. Normal Distribution Table D. R Code E. Solutions to Selected Exercises Bibliography List of Symbols Index

Guojun Gan is an Associate Professor in the Department of Mathematics at the University of Connecticut, Storrs, Connecticut, USA. He received a BS degree from Jilin University, Changchun, China, in 2001 and MS and PhD degrees from York University, Toronto, Canada, in 2003 and 2007, respectively. His research interests are in the interdisciplinary areas of actuarial science and data science.