Atjaunināt sīkdatņu piekrišanu

Adaptive Aeroservoelastic Control [Hardback]

Series edited by (BAE Systems, UK), (Indian Institute of Technology, Kanpur, India), Series edited by (University of Liverpool), Series edited by (MIT)
  • Formāts: Hardback, 392 pages, height x width x depth: 252x175x23 mm, weight: 748 g
  • Sērija : Aerospace Series
  • Izdošanas datums: 05-Feb-2016
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1118457633
  • ISBN-13: 9781118457634
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 133,98 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 392 pages, height x width x depth: 252x175x23 mm, weight: 748 g
  • Sērija : Aerospace Series
  • Izdošanas datums: 05-Feb-2016
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1118457633
  • ISBN-13: 9781118457634
Citas grāmatas par šo tēmu:
This is the first book on adaptive aeroservoelasticity and it presents the nonlinear and recursive techniques for adaptively controlling the uncertain aeroelastic dynamics
  • Covers both linear and nonlinear control methods in a comprehensive manner
  • Mathematical presentation of adaptive control concepts is rigorous
  • Several novel applications of adaptive control presented here are not to be found in other literature on the topic
  • Many realistic design examples are covered, ranging from adaptive flutter suppression of wings to the adaptive control of transonic limit-cycle oscillations
About the Author xv
Series Editor's Preface xvii
Preface xix
1 Introduction
1(22)
1.1 Aeroservoelasticity
1(3)
1.2 Unsteady Aerodynamics
4(3)
1.3 Linear Feedback Design
7(4)
1.4 Parametric Uncertainty and Variation
11(2)
1.5 Adaptive Control Design
13(7)
1.5.7 Adaptive Control Laws
15(5)
1.6 Organization
20(3)
References
21(2)
2 Linear Control Systems
23(64)
2.1 Notation
23(1)
2.2 Basic Control Concepts
23(3)
2.3 Input--Output Representation
26(2)
2.3.1 Gain and Stability
26(1)
2.3.2 Small Gain Theorem
27(1)
2.4 Input--Output Linear Systems
28(5)
2.4.1 Laplace Transform and Transfer Function
30(3)
2.5 Loop Shaping of Linear Control Systems
33(9)
2.5.7 Nyquist Theorem
34(2)
2.5.2 Gain and Phase Margins
36(2)
2.5.3 Loop Shaping for Single Variable Systems
38(2)
2.5.4 Singular Values
40(2)
2.5.5 Multi-variable Robustness Analysis: Input--Output Model
42(1)
2.6 State-Space Representation
42(10)
2.6.7 State-Space Theory of Linear Systems
43(6)
2.6.2 State Feedback by Eigenstructure Assignment
49(1)
2.6.3 Linear Observers and Output Feedback Compensators
50(2)
2.7 Stochastic Systems
52(13)
2.7.7 Ergodic Processes
57(2)
2.7.2 Filtering of Random Noise
59(1)
2.7.3 Wiener Filter
60(1)
2.7.4 Kalman Filter
61(4)
2.8 Optimal Control
65(6)
2.8.1 Euler--Lagrange Equations
65(2)
2.8.2 Linear, Quadratic Optimal Control
67(4)
2.9 Robust Control Design by LQG/LTR Synthesis
71(6)
2.10 H2H∞ Design
77(4)
2.10.1 H2 Design Procedure
79(1)
2.10.2 H∞ Design Procedure
80(1)
2.11 μ-Synthesis
81(6)
2.11.1 Linear Fractional Transformation
83(3)
References
86(1)
3 Aeroelastic Modelling
87(52)
3.1 Structural Model
88(10)
3.1.1 Statics
88(3)
3.1.2 Dynamics
91(2)
3.1.3 Typical Wing Section
93(5)
3.2 Aerodynamic Modelling Concepts
98(8)
5.2.7 Governing Equations for Unsteady Flow
99(1)
3.2.2 Full-Potential Equation
100(4)
3.2.3 Transonic Small-Disturbance Equation
104(2)
3.3 Baseline Aerodynamic Model
106(9)
3.3.1 Integral Equation Formulation
108(1)
3.3.2 Subsonic Unsteady Aerodynamics
109(5)
3.3.3 Supersonic Unsteady Aerodynamics
114(1)
3.4 Preliminary Aeroelastic Modelling Concepts
115(5)
3.5 Ideal Flow Model for Typical Section
120(5)
3.6 Transient Aerodynamics of Typical Section
125(1)
3.7 State-Space Model of the Typical Section
126(2)
3.8 Generalized Aeroelastic Plant
128(11)
References
135(4)
4 Active Flutter Suppression
139(32)
4.1 Single Degree-of-Freedom Flutter
141(5)
4.2 Bending-Torsion Flutter
146(1)
4.3 Active Suppression of Single Degree-of-Freedom Flutter
147(6)
4.4 Active Flutter Suppression of Typical Section
153(4)
4.4.1 Open-Loop Flutter Analysis
154(3)
4.5 Linear Feedback Stabilization
157(7)
4.5.1 Pole-Placement Regulator Design
157(3)
4.5.2 Observer Design
160(2)
4.5.3 Robustness of Compensated System
162(2)
4.6 Active Flutter Suppression of Three-Dimensional Wings
164(7)
References
168(3)
5 Self-Tuning Regulation
171(10)
5.1 Introduction
171(1)
5.2 Online Plant Identification
172(4)
5.2.1 Least-Squares Parameter Estimation
172(2)
5.2.2 Least-Squares Method with Exponential Forgetting
174(1)
5.2.3 Projection Algorithm
174(1)
5.2.4 Autoregressive Identification
175(1)
5.3 Design Methods for Stochastic Self-Tuning Regulators
176(1)
5.4 Aeroservoelastic Applications
176(5)
References
180(1)
6 Nonlinear Systems Analysis and Design
181(22)
6.1 Introduction
181(1)
6.2 Preliminaries
182(3)
6.2.1 Existence and Uniqueness of Solution
183(1)
6.2.2 Expanded Solution
184(1)
6.3 Stability in the Sense of Lyapunov
185(7)
6.3.1 Local Linearization about Equilibrium Point
187(2)
6.3.2 Lyapunov Stability Theorem
189(3)
6.3.3 LaSalle Invariance Theorem
192(1)
6.4 Input--Output Stability
192(3)
6.4.1 Hamilton--Jacobi Inequality
193(1)
6.4.2 Input-State Stability
194(1)
6.5 Passivity
195(8)
6.5.7 Positive Real Transfer Matrix
196(2)
6.5.2 Stability of Passive Systems
198(2)
6.5.3 Feedback Design for Passive Systems
200(1)
References
201(2)
7 Nonlinear Oscillatory Systems and Describing Functions
203(14)
7.1 Introduction
203(2)
7.2 Absolute Stability
205(5)
7.2.7 Popov Stability Criteria
207(1)
7.2.2 Circle Criterion
207(3)
7.3 Describing Function Approximation
210(2)
7.4 Applications to Aeroservoelastic Systems
212(5)
7.4.1 Nonlinear and Uncertain Aeroelastic Plant
213(3)
References
216(1)
8 Model Reference Adaptation of Aeroservoelastic Systems
217(38)
8.1 Lyapunov-Like Stability of Non-autonomous Systems
218(5)
8.1.1 Uniform Ultimate Boundedness
219(1)
8.1.2 Barbalat's Lemma
220(1)
8.1.3 LaSalle--Yoshizawa Theorem
220(3)
8.2 Gradient-Based Adaptation
223(2)
8.2.1 Least-Squared Error Adaptation
225(1)
8.3 Lyapunov-Based Adaptation
225(8)
8.3.1 Nonlinear Gain Evolution
228(3)
8.3.2 MRAS for Single-Input Systems
231(2)
8.4 Aeroservoelastic Applications
233(22)
8.4.1 Reference Aeroelastic Model
234(2)
8.4.2 Adaptive Flutter Suppression of Typical Section
236(5)
8.4.3 Adaptive Stabilization of Flexible Fighter Aircraft
241(13)
References
254(1)
9 Adaptive Backstepping Control
255(10)
9.1 Introduction
255(1)
9.2 Integrator Backstepping
256(7)
9.2.1 A Motivating Example
257(6)
9.3 Aeroservoelastic Application
263(2)
Reference
264(1)
10 Adaptive Control of Uncertain Nonlinear Systems
265(30)
10.1 Introduction
265(1)
10.2 Integral Adaptation
266(7)
10.2.1 Extension to Observer-Based Feedback
268(1)
10.2.2 Modified Integral Adaptation with Observer
269(4)
10.3 Model Reference Adaptation of Nonlinear Plant
273(2)
10.4 Robust Model Reference Adaptation
275(20)
10.4.1 Output-Feedback Design
285(3)
10.4.2 Adaptive Flutter Suppression of a Three-Dimensional Wing
288(6)
References
294(1)
11 Adaptive Transonic Aeroservoelasticity
295(36)
11.1 Steady Transonic Flow Characteristics
296(3)
11.2 Unsteady Transonic Flow Characteristics
299(11)
11.2.1 Thin Airfoil with Oscillating Flap
300(8)
11.2.2 Supercritical Airfoil Oscillating in Pitch
308(2)
11.3 Modelling for Transonic Unsteady Aerodynamics
310(6)
11.3.1 Indicial Method
311(1)
11.3.2 Volterra--Wiener Method
312(1)
11.3.3 Describing Function Method
313(3)
11.4 Transonic Aeroelastic Plant
316(1)
11.5 Adaptive Control of Control-Surface Nonlinearity
317(5)
11.5.1 Transonic Flutter Mechanism
319(3)
11.6 Adaptive Control of Limit-Cycle Oscillation
322(9)
References
330(1)
Appendix A Analytical Solution for Ideal Unsteady Aerodynamics
331(8)
A.1 Pure Heaving Oscillation
335(1)
A.2 Kussner--Schwarz Solution for General Oscillation
336(3)
References
337(2)
Appendix B Solution to Possio's Integral Equation for Subsonic, Unsteady Aerodynamics
339(8)
B.1 Dietze's Iterative Solution
340(1)
B.2 Analytical Solution by Fettis
341(3)
B.3 Closed-Form Solution
344(3)
References
345(2)
Appendix C Flutter Analysis of Modified DAST-ARW1 Wing
347(12)
References
357(2)
Index 359
Ashish Tewari is a Professor of Aerospace Engineering at the Indian Institute of Technology, Kanpur. He specializes in Flight Mechanics and Control, and is the single author of five previous books, including Aeroservoelasticity Modeling and Control  (Birkhäuser, Boston, 2015) and Advanced Control of Aircraft, Spacecraft, and Rockets (Wiley, Chichester, 2011). He is also the author of several research papers in aircraft and spacecraft dynamics and control systems. He is an Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA), and a Senior Member of the Institution of Electrical and Electronics Engineers (IEEE). Prof. Tewari holds Ph.D.  and M.S. degrees in Aerospace Engineering from the University of Missouri-Rolla, and a B.Tech. degree in Aeronautical Engineering from the Indian Institute of Technology, Kanpur.