Atjaunināt sīkdatņu piekrišanu

E-grāmata: Additive and Advanced Manufacturing, Inverse Problem Methodologies and Machine Learning and Data Science, Volume 4: Proceedings of the 2023 Annual Conference & Exposition on Experimental and Applied Mechanics

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 237,34 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Additive and Advanced Manufacturing, Inverse Problem Methodologies and Machine Learning and Data Science, Volume 4 of the Proceedings of the 2023 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fourth volume of five from the Conference, brings together contributions to this important area of research and engineering.  The collection presents early findings and case studies on a wide range of topics and includes papers in the following general technical research areas:





AM Composites and Polymers





Dynamic Behavior of Additively Manufactured Materials and Structures





Joint Residual Stress and Additive Manufacturing





ML for Material Model Identification





Novel AM Structures





Novel Processing and Testing of Additively Manufactured Materials





Plasticity and Complex Material Behavior





Virtual Fields Method
Chapter
1. Quantifying residual stresses generated by laser powder bed
fusion of metallic samples.
Chapter
2. Loading-Unloading Compressive
Response and Energy Dissipation of Liquid Crystal Elastomers and Their 3D
Printed Lattice Structures at Low and Intermediate Strain Rates.
Chapter
3.
Residual Stress Induced in Thin Plates During Additive Manufacturing.-
Chapter
4. Investigating the Effects of Acetone Vapor Treatment and Post
Drying Conditions on Tensile and Fatigue behavior of 3D Printed ABS
Components.
Chapter
5. Mechanics of Novel Double-Rounded-V Hierarchical
Auxetic Structure - Finite Element Analysis and Experiments Using
Three-dimensional Digital Image Correlation.
Chapter
6. Repeatability of
Residual Stress in Replicate Additively Manufactured 316L Stainless Steel
Samples.
Chapter
7. Acoustic nondestructive characterization of metal
pantographs for material and defect identification.
Chapter
8. Rapid
prototyping of a micro-scale spectroscopic system by two-photondirect laser
writing.
Chapter
9. Bioinspired Interfaces for Improved Interlaminar Shear
Strength in 3D Printed Multi-Material Polymer Composites.
Chapter
10.
Thermo-mechanical Characterization of High-strength Steel through Inverse
Methods.
Chapter
11. A multi-testing approach for the full calibration of 3D
anisotropic plasticity models via inverse methods.
Chapter
12. Finite
Element Based Material Property Identification Utilizing Full-Field
Deformation Measurements.
Chapter
13. Data-driven material models for
engineering materials subjected to arbitrary loading paths: influence of the
dimension of the dataset.
Chapter
14. Data-driven methodology to extract
stress fields in materials subjected to dynamic loading.
Sharlotte L.B. KramerSandia National Laboratories, NM, USA; Emily RetzlaffUnited States Naval Academy, MD, USA; Piyush ThakreDow Inc., TX,USA; Johan HoefnagelsEindhoven University of Technology, Netherlands; Marco RossiUniversitą Politecnica delle Marche, Italy; Attilio LattanziCalifornia Institute of Technology, CA, USA; Franēois HemezLawrence Livermore National Laboratory, CA, USA; Mostafa MirshekariCarnegie Mellon University, PA, USA; Austin DowneyUniversity of South Carolina, SC, USA