Atjaunināt sīkdatņu piekrišanu

E-grāmata: Additive Number Theory The Classical Bases

  • Formāts: PDF+DRM
  • Sērija : Graduate Texts in Mathematics 164
  • Izdošanas datums: 14-Mar-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781475738452
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 88,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Graduate Texts in Mathematics 164
  • Izdošanas datums: 14-Mar-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781475738452
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

[ Hilbert's] style has not the terseness of many of our modem authors in mathematics, which is based on the assumption that printer's labor and paper are costly but the reader's effort and time are not. H. Weyl [ 143] The purpose of this book is to describe the classical problems in additive number theory and to introduce the circle method and the sieve method, which are the basic analytical and combinatorial tools used to attack these problems. This book is intended for students who want to lel Ill additive number theory, not for experts who already know it. For this reason, proofs include many "unnecessary" and "obvious" steps; this is by design. The archetypical theorem in additive number theory is due to Lagrange: Every nonnegative integer is the sum of four squares. In general, the set A of nonnegative integers is called an additive basis of order h if every nonnegative integer can be written as the sum of h not necessarily distinct elements of A. Lagrange 's theorem is the statement that the squares are a basis of order four. The set A is called a basis offinite order if A is a basis of order h for some positive integer h. Additive number theory is in large part the study of bases of finite order. The classical bases are the squares, cubes, and higher powers; the polygonal numbers; and the prime numbers. The classical questions associated with these bases are Waring's problem and the Goldbach conjecture.

Recenzijas

From the reviews:

This book provides a very thorough exposition of work to date on two classical problems in additive number theory . is aimed at students who have some background in number theory and a strong background in real analysis. A novel feature of the book, and one that makes it very easy to read, is that all the calculations are written out in full there are no steps left to the reader. The book also includes a large number of exercises . (Allen Stenger, The Mathematical Association of America, August, 2010)

Papildus informācija

Springer Book Archives
I Warings problem.- 1 Sums of polygons.- 2 Warings problem for cubes.-
3 The HilbertWaring theorem.- 4 Weyls inequality.- 5 The HardyLittlewood
asymptotic formula.- II The Goldbach conjecture.- 6 Elementary estimates for
primes.- 7 The ShnirelmanGoldbach theorem.- 8 Sums of three primes.- 9 The
linear sieve.- 10 Chens theorem.- III Appendix.- Arithmetic functions.- A.1
The ring of arithmetic functions.- A.2 Sums and integrals.- A.3
Multiplicative functions.- A.4 The divisor function.- A.6 The Möbius
function.- A.7 Ramanujan sums.- A.8 Infinite products.- A.9 Notes.- A.10
Exercises.