Atjaunināt sīkdatņu piekrišanu

Advanced Algorithmic Approaches to Medical Image Segmentation: State-of-the-Art Applications in Cardiology, Neurology, Mammography and Pathology Softcover reprint of the original 1st ed. 2002 [Mīkstie vāki]

  • Formāts: Paperback / softback, 636 pages, height x width: 235x155 mm, weight: 1009 g, XXVII, 636 p., 1 Paperback / softback
  • Sērija : Advances in Computer Vision and Pattern Recognition
  • Izdošanas datums: 05-Sep-2012
  • Izdevniecība: Springer London Ltd
  • ISBN-10: 1447110439
  • ISBN-13: 9781447110439
  • Mīkstie vāki
  • Cena: 206,68 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 243,15 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 636 pages, height x width: 235x155 mm, weight: 1009 g, XXVII, 636 p., 1 Paperback / softback
  • Sērija : Advances in Computer Vision and Pattern Recognition
  • Izdošanas datums: 05-Sep-2012
  • Izdevniecība: Springer London Ltd
  • ISBN-10: 1447110439
  • ISBN-13: 9781447110439
Medical imaging is an important topic which is generally recognised as key to better diagnosis and patient care. It has experienced an explosive growth over the last few years due to imaging modalities such as X-rays, computed tomography (CT), magnetic resonance (MR) imaging, and ultrasound. This book focuses primarily on state-of-the-art model-based segmentation techniques which are applied to cardiac, brain, breast and microscopic cancer cell imaging. It includes contributions from authors based in both industry and academia and presents a host of new material including algorithms for: - brain segmentation applied to MR; - neuro-application using MR; - parametric and geometric deformable models for brain segmentation; - left ventricle segmentation and analysis using least squares and constrained least squares models for cardiac X-rays; - left ventricle analysis in echocardioangiograms; - breast lesion detection in digital mammograms; detection of cells in cell images. As an overview of the latest techniques, this book will be of particular interest to students and researchers in medical engineering, image processing, computer graphics, mathematical modelling and data analysis. It will also be of interest to researchers in the fields of mammography, cardiology, pathology and neurology.

Papildus informācija

Springer Book Archives
1. Principles of Image Generation.- 1.1 Introduction.- 1.2 Ultrasound
Image Generation.- 1.3 X-Ray Cardiac Image Generation.- 1.4 Magnetic
Resonance Image Generation.- 1.5 Computer Tomography Image Generation.- 1.6
Positron-Emission Tomography Image Generation.- 1.7 Comparison of Imaging
Modalities: A Summary.-
2. Segmentation in Echocardiographic Images.- 2.1
Introduction.- 2.2 Heart Physiology and Anatomy.- 2.3 Review of LV Boundary
Extraction Techniques Applied to Echocardiographic Data.- 2.4Automatic Fuzzy
Reasoning-Based Left Ventricular Center Point Extraction.- 2.5 A New Edge
Detection in the Wavelet Transform Domain.- 2.6 LV Segmentation System.- 2.7
Conclusions.- 2.8 Acknowledgments.-
3. Cardiac Boundary Segmentation.- 3.1
Introduction.- 3.2 Cardiac Anatomy and Data Acquisitions for MR, CT,
Ul-trasound and X-Rays.- 3.4 Model-Based Pattern Recognition Methods for LV
Modeling.- 3.5 Left Ventricle Apex Modeling: A Model-Based Approach.- 3.6
Integration of Low-Level Features in LV Model-Based Cardiac Imaging: Fusion
of Two Computer Vision Systems.- 3.7 General Purpose LV Validation
Technique.- 3.8 LV Convex Hulling: Quadratic Training-Based Point Modeling.-
3.9 LV Eigen Shape Modeling.- 3.10 LV Neural Network Models.- 3.11
Comparative Study and Summary of the Characteristics of Model-Based
Techniques.- 3.12 LV Quantification: Wall Motion and Tracking.- 3.13
Conclusions.-
4. Brain Segmentation Techniques.- 4.1 Introduction.- 4.2 Brain
Scanning and its Clinical Significance.- 4.3 Region-Based 2-D and 3-D
Cortical Segmentation Techniques.- 4.4 Boundary/Surface-Based 2-D and 3-D
Cortical Segmentation Techniques: Edge, Reconstruction, Parametric and
Geometric Snakes/Surfaces.- 4.5 Fusion of Boundary/Surface with Region-Based
2-D and 3-D Cortical Segmentation Techniques.- 4.6 3-D Visualization Using
Volume Rendering and Texture Mapping.- 4.7 A Note on fMRI: Algorithmic
Approach for Establishing the Relationship Between Cognitive Functions and
Brain Cortical Anatomy.- 4.8 Discussions: Advantages, Validation and New
Challenges i 2-D.- 4.9 Conclusions and the Future.-
5. Segmentation for
Multiple Sclerosis Lesion.- 5.1 Introduction.- 5.2 Segmentation Techniques.-
5.3 AFFIRMATIVE Images.- 5.4 Image Pre-Processing.- 5.5 Quantification of
Enhancing Multiple Sclerosis Lesions.- 5.6 Quadruple Contrast Imaging.- 5.7
Discussion.-
6. Finite Mixture Models.- 6.1 Introduction.- 6.2 Pixel Labeling
Using the Classical Mixture Model.- 6.3 Pixel Labeling Using the Spatially
Variant Mixture Model.- 6.4 Comparison of CMM and SVMM for Pixel Labeling.-
6.5 Bayesian Pixel Labeling Using the SVMM.- 6.6 Segmentation Results.- 6.7
Practical Aspects.- 6.8 Summary.- 6.9 Acknowledgements.-
7. MR Spectroscopy.-
7.1 Introduction.- 7.2 A Short History of Neurospectroscopic Imaging and
Segmentation in Alzheimers Disease and Multiple Sclerosis.- 7.3 Data
Acquisition and Image Segmentation.- 7.4 Proton Magnetic Resonance
Spectroscopic Imaging and Segmentation in Multiple Sclerosis.- 7.5 Proton
Magnetic Resonance Spectroscopic Imaging and Segmentation of Alzheimers
Disease.- 7.6 Applications of Magnetic Resonance Spectroscopic Imaging and
Segmentation.- 7.7 Discussion.- 7.8 Conclusion.-
8. Fast WM/GM Boundary
Estimation.- 8.1 Introduction.- 8.2 Derivation of the Regional Geometric
Active Contour Model from the Classical Parametric Deformable Model.- 8.3
Numerical Implementation of the Three Speed Functions in the Level Set
Framework for Geometric Snake Propagation.- 8.4 Fast Brain Segmentation
System Based on Regional Level Sets.- 8.5 MR Segmentation Results onSynthetic
and Real Data.- 8.6 Advantages of the Regional Level Set Technique.- 8.7
Discussions: Comparison with Previous Techniques.- 8.8 Conclusions and
Further Directions.-
9. Digital Mammography Segmentation.- 9.1 Introduction.-
9.2 Image Segmentation in Mammography.- 9.3 Anatomy of the Breast.- 9.4 Image
Acquisition and Formats.- 9.5 Mammogram Enhancement Methods.- 9.6 Quantifying
Mammogram Enhancement.- 9.7 Segmentation of Breast Profile.- 9.8 Segmentation
of Microcalcifications.- 9.9 Segmentation of Masses.- 9.10 Measures of
Segmentation and Abnormality Detection.- 9.11 Feature Extraction From
Segmented Regions.- 9.12 Public Domain Databases in Mammography.- 9.13
Classification and Measures of Performance.- 9.14 Conclusions.- 9.15
Acknowledgements.-
10. Cell Image Segmentation for Diagnostic Pathology.-
10.1 Introduction.- 10.2 Segmentation.- 10.3 Decision Support System for
Pathology.- 10.4 Conclusion.-
11. The Future in Segmentation.- 11.1 Future
Research in Medical Image Segmentation.