Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advanced Control of Doubly Fed Induction Generator for Wind Power Systems

(Zhejiang University), (Zhejiang University, China), Series edited by (Dalhousie University), (Aalborg University, Denmark), (Zhejiang University)
  • Formāts - PDF+DRM
  • Cena: 134,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Covers the fundamental concepts and advanced modelling techniques of Doubly Fed Induction Generators accompanied by analyses and simulation results

Filled with illustrations, problems, models, analyses, case studies, selected simulation and experimental results, Advanced Control of Doubly Fed Induction Generator for Wind Power Systems provides the basic concepts for modelling and controlling of Doubly Fed Induction Generator (DFIG) wind power systems and their power converters. It explores both the challenges and concerns of DFIG under a non-ideal grid and introduces the control strategies and effective operations performance options of DFIG under a non-ideal grid. 

Other topics of this book include thermal analysis of DFIG wind power converters under grid faults; implications of the DFIG test bench; advanced control of DFIG under harmonic distorted grid voltage, including multiple-loop and resonant control; modeling of DFIG and GSC under unbalanced grid voltage; the LFRT of DFIG, including the recurring faults ride through of DFIG; and more. In addition, this resource:

  • Explores the challenges and concerns of Doubly Fed Induction Generators (DFIG) under non-ideal grid
  • Discusses basic concepts of DFIG wind power system and vector control schemes of DFIG
  • Introduces control strategies under a non-ideal grid
  • Includes case studies and simulation and experimental results

Advanced Control of Doubly Fed Induction Generator for Wind Power Systems is an ideal book for graduate students studying renewable energy and power electronics as well as for research and development engineers working with wind power converters.

Preface xiii
Nomenclature xv
Part I Introduction To Wind Power Generation
Chapter 1 Introduction
3(18)
1.1 Global Wind Power Development
3(2)
1.1.1 Global Environment Challenge and Energy Crisis
3(1)
1.1.2 Renewable Energy Development
3(1)
1.1.3 Wind Energy Development
4(1)
1.2 Evolution of Wind Power System
5(4)
1.2.1 Basic Structure of a Wind Turbine
6(1)
1.2.2 Power Flow in the Wind Turbine System
6(1)
1.2.3 Fixed-Speed Wind Turbine System
7(1)
1.2.4 Variable-Speed Wind Turbine System
8(1)
1.3 Power Electronics in Wind Turbine Systems
9(2)
1.3.1 Power Electronics in Fixed-Speed Wind Turbine System
9(1)
1.3.2 Power Electronics in Variable-Speed Wind Turbine System
9(2)
1.4 Challenges and Trends in Future Wind Power Technology
11(7)
1.4.1 Lower Cost
11(1)
1.4.2 Larger Capacity
12(1)
1.4.3 Higher Reliability
13(2)
1.4.4 The Application of New Power Semiconductor Devices
15(1)
1.4.5 More Advanced Grid Integration Control
15(1)
1.4.6 Configurations of Wind Power Plants
16(2)
1.5 The Topics of This Book
18(1)
References
18(3)
Chapter 2 Basics Of Wind Power Generation System
21(22)
2.1 Introduction
21(1)
2.2 Wind Power Concept
21(5)
2.2.1 Fixed-Speed Concept
23(1)
2.2.2 Variable-Speed Concept with Partial Power Converters
23(1)
2.2.3 Variable-Speed Concept with Full-Scale Power Converters
24(1)
2.2.4 Hardware Protection Methods
25(1)
2.3 Variable-Speed Wind Turbine
26(5)
2.3.1 Wind Turbine Model
26(2)
2.3.2 Pitch Control
28(1)
2.3.3 Overall Control Scheme
29(1)
2.3.4 Operational Range of Wind Turbine Systems
29(2)
2.3.5 Wind Turbine Operation Around Cut-In Speed
31(1)
2.3.6 MPPT Operation of Wind Turbine
31(1)
2.3.7 Wind Turbine Operation Around Cut-off Speed
31(1)
2.4 Control of Power Converter
31(3)
2.4.1 Control of DFIG Power Converter
32(1)
2.4.2 Control of PMSG Power Converter
32(1)
2.4.3 Control of SCIG Power Converter
33(1)
2.5 Wind Power Transmission
34(7)
2.5.1 Wind Farm
34(1)
2.5.2 Power System
35(2)
2.5.3 Grid Faults
37(3)
2.5.4 Unbalanced Grid Voltage
40(1)
2.5.5 Grid Harmonic Voltage
40(1)
2.6 Summary
41(1)
References
41(2)
Chapter 3 Grid Codes For Wind Power Generation Systems
43(24)
3.1 Introduction
43(1)
3.2 Grid Code Requirements Under Normal Operation
44(7)
3.2.1 Frequency and Voltage Deviation
44(3)
3.2.2 Active Power Control
47(2)
3.2.3 Reactive Power Control
49(1)
3.2.4 Inertial Control and Power System Stabilizer Function
50(1)
3.3 Grid Code Requirements Under Non-Ideal Grid
51(7)
3.3.1 Low Voltage Ride-Through Requirement
51(4)
3.3.2 High Voltage Ride-Through Requirement
55(1)
3.3.3 Recurring Fault Ride-Through Requirement
55(2)
3.3.4 Unbalanced Grid Operation
57(1)
3.3.5 Harmonic Distortion Requirements
57(1)
3.4 Grid Codes for Distributed Wind Power Generation
58(4)
3.4.1 Grid Limitation
59(1)
3.4.2 Active and Reactive Power Control
60(1)
3.4.3 Operation under Grid Faults
61(1)
3.5 Summary
62(1)
References
62(5)
Part II Modeling And Control Of DFIG
Chapter 4 Modeling Of DFIG Wind Power Systems
67(32)
4.1 Introduction
67(1)
4.2 Steady-State Equivalent Circuit of a DFIG
67(7)
4.2.1 Steady-State Equivalent Circuit of a DFIG
68(3)
4.2.2 Power in the DFIG
71(3)
4.3 Dynamic Model of a DFIG
74(11)
4.3.1 ABC (abc) Model
75(2)
4.3.2 αβ Model
77(4)
4.3.3 dq Model
81(4)
4.4 Modeling of the Converter
85(10)
4.4.1 Steady-State Equivalent Circuit of the Converter
85(1)
4.4.2 abc Model with L Filter
85(4)
4.4.3 dq Model with L Filter
89(2)
4.4.4 dq Model with LCL Filter
91(2)
4.4.5 Model of the PWM Modulator
93(1)
4.4.6 Per-Unit System
94(1)
4.5 Summary
95(1)
References
96(3)
Chapter 5 Control Of DFIG Power Converters
99(42)
5.1 Introduction
99(1)
5.2 Start-Up Process of the DFIG System
99(2)
5.3 Grid-Side Converter
101(13)
5.3.1 Control Target
101(1)
5.3.2 Grid Synchronization
102(4)
5.3.3 Control Scheme
106(2)
5.3.4 Simplified Control Model in s-Domain
108(3)
5.3.5 Controller Design
111(3)
5.3.6 Test Results
114(1)
5.4 Rotor-Side Converter in Power-Control Mode
114(10)
5.4.1 Control Target
114(1)
5.4.2 Control Scheme
114(5)
5.4.3 Control Model in s-Domain
119(2)
5.4.4 Controller Design
121(1)
5.4.5 Test Results from a 1.5 MW DFIG WPS
121(3)
5.5 Rotor-Side Converter in Speed-Control Mode
124(4)
5.5.1 Control Target
124(1)
5.5.2 Grid Synchronization
124(1)
5.5.3 Control Scheme
124(1)
5.5.4 Control Model in s-Domain
125(2)
5.5.5 Test Results
127(1)
5.6 Rotor-Side Converter in Starting Mode
128(7)
5.6.1 Control Target
128(1)
5.6.2 Grid Synchronization
129(1)
5.6.3 Control Scheme
129(2)
5.6.4 Control Model in s-Domain
131(2)
5.6.5 Controller Design
133(1)
5.6.6 Experiment Results
134(1)
5.7 Control-Mode Switching
135(1)
5.7.1 From Starting Mode to Power-Control or Speed-Control Mode
136(1)
5.7.2 Between Power-Control Mode and Speed-Control Mode
136(1)
5.8 Summary
136(1)
References
137(4)
Part III Operation Of DFIG Under Distorted Grid Voltage
Chapter 6 Analysis Of DFIG Under Distorted Grid Voltage
141(26)
6.1 Introduction
141(1)
6.2 Influence on GSC
142(7)
6.2.1 Model of GSC under Distorted Grid Voltage
142(2)
6.2.2 Influence on Grid Current
144(2)
6.2.3 Influence on Output Active and Reactive Powers
146(1)
6.2.4 Influence on the DC-Bus Voltage
147(2)
6.2.5 Example of a 1.5 MW DFIG WPS
149(1)
6.3 Influence on DFIG and RSC
149(13)
6.3.1 Model of DFIG and RSC under Distorted Grid Voltage
149(3)
6.3.2 Influence on Rotor Current
152(2)
6.3.3 Influence on Stator Current
154(2)
6.3.4 Influence on Active and Reactive Powers
156(1)
6.3.5 Influence on Electromagnetic Torque
157(1)
6.3.6 Influence on DC-Bus Voltage
158(1)
6.3.7 Example of a 1.5 MW DFIG WPS
159(3)
6.4 Discussion on Different Controller Parameters
162(1)
6.5 Discussion on Different Power Scales
163(1)
6.6 Summary
164(1)
References
164(3)
Chapter 7 Multiple-Loop Control Of DFIG Under Distorted Grid Voltage
167(28)
7.1 Introduction
167(1)
7.2 GSC Control
168(8)
7.2.1 Control Target
168(2)
7.2.2 Control Scheme
170(2)
7.2.3 System model with Harmonic Suppression Loop
172(3)
7.2.4 Control Effect
175(1)
7.2.5 Test Results
175(1)
7.3 DFIG and RSC Control
176(12)
7.3.1 Control Target
176(2)
7.3.2 Control Scheme
178(1)
7.3.3 System Model and Control Effect
179(3)
7.3.4 Controller Design
182(1)
7.3.5 Simulation and Test Results
183(5)
7.4 Influence on the Fundamental Current Loop
188(3)
7.4.1 Influence on the Stability and Dynamic Response
188(1)
7.4.2 Simulation and Test Results
189(2)
7.5 Summary
191(1)
References
192(3)
Chapter 8 Resonant Control Of DFIG Under Grid Voltage Harmonics Distortion
195(42)
8.1 Introduction
195(1)
8.2 Resonant Controller
195(2)
8.2.1 Mathematical Model of a Resonant Controller
195(2)
8.2.2 Resonant Controller in dq Frames
197(1)
8.3 Stator Current Control Using Resonant Controllers
197(18)
8.3.1 Control Target
197(1)
8.3.2 Control Scheme
198(1)
8.3.3 Control Model in dq Frame
199(2)
8.3.4 Control Effect
201(8)
8.3.5 Experimental Results
209(6)
8.4 Influence on Normal Control Loop
215(7)
8.4.1 Static Performance
215(3)
8.4.2 Stability of the System
218(3)
8.4.3 Dynamic Performance
221(1)
8.5 Design and Optimization of Current Controller
222(11)
8.5.1 Systematic Design Procedure
222(1)
8.5.2 Phase Compensation Methods for the Resonant Controller
223(8)
8.5.3 Simulation Results of Phase Compensation
231(2)
8.6 Summary
233(1)
References
234(3)
Chapter 9 DFIG Under Unbalanced Grid Voltage
237(22)
9.1 Introduction
237(1)
9.2 RSC and DFIG Under Unbalanced Grid Voltage
237(7)
9.2.1 Rotor and Stator Currents
239(2)
9.2.2 Active and Reactive Powers
241(2)
9.2.3 Electromagnetic Torque
243(1)
9.2.4 Simulation on the Influence of Grid Voltage Unbalance
244(1)
9.3 GSC Under Unbalanced Grid Voltage
244(4)
9.3.1 Grid Current
244(2)
9.3.2 Active Power of the Generator
246(1)
9.3.3 DC-Bus Current and Voltage
246(2)
9.4 Control Limitations Under Unbalanced Grid Voltage
248(8)
9.4.1 Control Limitations of RSC
249(1)
9.4.2 Control Limitations of GSC
250(3)
9.4.3 DC-Bus Capacitor Current and Voltage
253(3)
9.5 Summary
256(1)
References
257(2)
Chapter 10 Control Of DFIG Wind Power System Under Unbalanced Grid Voltage
259(40)
10.1 Introduction
259(1)
10.2 Control Targets
259(1)
10.3 Stator Current Control with Resonant Controller
260(6)
10.3.1 Control Scheme
260(1)
10.3.2 Analysis of the Controller
260(3)
10.3.3 Experiment and Simulation Results
263(3)
10.4 DC Voltage Fluctuation Control by GSC
266(27)
10.4.1 Challenges in the Control of GSC
267(3)
10.4.2 DC Current Calculation
270(1)
10.4.3 Control Scheme
271(1)
10.4.4 Control Model
272(6)
10.4.5 Elimination of Third-Order Harmonic Current Introduced by Capacitor Current Control
278(6)
10.4.6 Experimental Results
284(9)
10.5 Summary
293(1)
References
293(6)
Part IV Grid Fault Ride-Through Of DFIG
Chapter 11 Dynamic Model Of DFIG Under Grid Faults
299(42)
11.1 Introduction
299(1)
11.2 Behavior During Voltage Dips
300(15)
11.2.1 Equivalent Circuits of DFIG under Voltage Dips
300(3)
11.2.2 With Rotor Open Circuit
303(4)
11.2.3 With Normal Vector Control
307(2)
11.2.4 With Rotor-Side Crowbar
309(4)
11.2.5 Non-Instant Voltage Dips
313(2)
11.3 DFIG Behavior During Voltage Recovery
315(5)
11.3.1 During Instant Voltage Recovery
315(1)
11.3.2 Voltage Recovery in Power Systems
315(1)
11.3.3 During Three-Phase Fault Recovery
316(3)
11.3.4 During Three-Phase-To-Ground Fault Recovery
319(1)
11.3.5 During Asymmetrical Fault Recovery
320(1)
11.4 Under Recurring Grid Faults
320(19)
11.4.1 During Symmetrical Recurring Fault
321(4)
11.4.2 Influence of the First Dip Level
325(3)
11.4.3 Influence of the Grid Fault Angle
328(2)
11.4.4 Influence of the Durations between Two Faults
330(2)
11.4.5 Asymmetrical Recurring Faults
332(3)
11.4.6 Experiments of DFIG under Recurring Grid Faults
335(4)
11.5 Summary
339(1)
References
339(2)
Chapter 12 Grid Fault Ride-Through Of DFIG
341(46)
12.1 Introduction
341(1)
12.2 PLL Under Grid Faults
342(6)
12.2.1 SRF-PLL under Grid Faults
342(3)
12.2.2 SRF-PLL with a Low Pass Filter
345(1)
12.2.3 SRF-PLL with Negative/Positive-Sequence Separation
345(2)
12.2.4 Test Results of PLL with Sequence Separation
347(1)
12.3 FRT Strategies for DFIG Based on Improved Control
348(14)
12.3.1 Demagnetizing Current Control
349(7)
12.3.2 Flux Linkage Tracking Control
356(3)
12.3.3 Feedforward Control
359(3)
12.4 FRT Strategies Based on Hardware Solutions
362(7)
12.4.1 Rotor-Side Crowbar
364(3)
12.4.2 DC Chopper
367(1)
12.4.3 Series Dynamic Breaking Resistor
367(1)
12.4.4 Dynamic Voltage Restorer
368(1)
12.5 Recurring Fault Ride Through
369(15)
12.5.1 Challenge for the Recurring Grid Fault Ride Through
370(5)
12.5.2 Control Target for Recurring Fault Ride Through
375(1)
12.5.3 Control Implication
376(3)
12.5.4 Control Scheme
379(1)
12.5.5 Simulation and Test Results
380(4)
12.6 Summary
384(1)
References
384(3)
Chapter 13 Thermal Control Of Power Converter In Normal And Abnormal Operations
387(30)
13.1 Loss Model of Power Converter
387(5)
13.1.1 Loss Model of a Power Semiconductor Device
387(2)
13.1.2 Loss Model of Grid-Side Converter
389(1)
13.1.3 Loss Model of Rotor-Side Converter
390(2)
13.2 Thermal Model of Power Converter
392(5)
13.2.1 Thermal Impedance in Power Module
392(2)
13.2.2 Junction-Temperature Calculation
394(3)
13.3 Thermal Loading During Normal Operation
397(4)
13.3.1 DFIG System in Case Study
397(1)
13.3.2 Loss Breakdown at Various Loading Conditions
398(2)
13.3.3 Thermal Profile at Various Loading Conditions
400(1)
13.4 Thermal Loading in Abnormal Operation
401(7)
13.4.1 Grid Codes Requirements
402(1)
13.4.2 Operation Behavior under Voltage Dips
403(2)
13.4.3 Loss Distribution and Thermal Behavior During LVRT
405(3)
13.5 Smart Thermal Control by Reactive Power Circulation
408(4)
13.5.1 Effects of Reactive Power on Current Characteristic
408(3)
13.5.2 Thermal Performance Improvement by Reactive Power Control
411(1)
13.6 Summary
412(1)
References
413(4)
Part V DFIG Test Bench
Chapter 14 DFIG Test Bench
417(32)
14.1 Introduction
417(1)
14.2 Scheme of the DFIG Test Bench
417(2)
14.3 The Caged Motor and its Driving Inverter
419(1)
14.4 DFIG Test System
420(9)
14.4.1 DFIG
420(1)
14.4.2 Hardware Design of the GSC
421(2)
14.4.3 Control Design of the GSC
423(2)
14.4.4 Testing of the GSC
425(1)
14.4.5 Hardware Design of the RSC
426(1)
14.4.6 Control Design of the RSC
426(3)
14.4.7 Testing of the RSC
429(1)
14.5 Rotor-Side Crowbar
429(2)
14.6 Grid Emulator
431(8)
14.6.1 Demands of the Grid Emulator
431(1)
14.6.2 Hardware Design
431(3)
14.6.3 Control Design
434(3)
14.6.4 Testing of the Grid Emulator
437(1)
14.6.5 Test Waveforms of Grid Emulator
437(2)
14.7 Communications and Up-Level Control
439(2)
14.8 Start-Up and Protection of the System
441(7)
14.8.1 Start-Up of the System
441(3)
14.8.2 Shutdown of the System
444(1)
14.8.3 Overcurrent Protection of the System
444(4)
14.8.4 Overvoltage Protection of the System
448(1)
14.9 Summary
448(1)
References
448(1)
Appendix 449(3)
A.1 Flux Equations in a β Reference Frame
449(2)
A.2 Typical Parameters of a DFIG
451(1)
References 452(1)
Index 453
DEHONG XU, PHD, is a Professor in the College of Electrical Engineering of Zhejiang University, China, where he teaches modelling and control of power electronics and renewable systems.

FREDE BLAABJERG, PHD, is a Professor in Power Electronics and Villum Investigator at the Department of Energy Technology, Aalborg University, Denmark, as well as a Visiting Professor at Zhejiang University, China.

WENJIE CHEN received a PhD from the College of Electrical Engineering of Zhejiang University. Now he is a senior engineer in Powertrain Solution Division, BOSCH.

NAN ZHU received a PhD from the College of Electrical Engineering of Zhejiang University. Now he is a senior engineer in the renewable energy division of Huawei.