Atjaunināt sīkdatņu piekrišanu

Advanced DC/DC Converters 2nd edition [Hardback]

(Nanyang Technological University, Singapore), (AnHui University, HeFei, China; Nanyang Technological University, Singapore)
  • Formāts: Hardback, 746 pages, height x width: 254x178 mm, weight: 1624 g, 600 Illustrations, black and white
  • Sērija : Power Electronics and Applications Series
  • Izdošanas datums: 01-Dec-2016
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498774903
  • ISBN-13: 9781498774901
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 256,29 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 746 pages, height x width: 254x178 mm, weight: 1624 g, 600 Illustrations, black and white
  • Sērija : Power Electronics and Applications Series
  • Izdošanas datums: 01-Dec-2016
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498774903
  • ISBN-13: 9781498774901
Citas grāmatas par šo tēmu:

DC/DC conversion techniques have undergone rapid development in recent decades. With the pioneering work of authors Fang Lin Luo and Hong Ye, DC/DC converters have now been sorted into their six generations, and by a rough count, over 500 different topologies currently exist, with more being developed each year.

Advanced DC/DC Converters offers a concise, practical presentation of DC/DC converters, summarizing the spectrum of conversion technologies and presenting many new ideas and more than 100 new topologies. The treatment begins with background material on DC/DC conversion and discussions on voltage lift and super-lift converters. It then proceeds through each generation, including the groundbreaking sixth generation—converters developed by the authors that can be cascaded for high voltage transfer gain.

More than 320 figures, 60 tables, and 500 formulae allow the reader to more easily grasp the overall structure of advanced DC/DC converters, provide fast access to precise data, and help them to quickly determine the values of their own circuit components. Nowhere else in the literature are DC/DC converters so logically sorted and systematically introduced. Nowhere else can this detailed information on prototype topologies that represent a major contribution to modern power engineering be found.

This new edition updates every chapter and offers three new chapters. The introduction of the super-lift technique is an outstanding achievement in DC/DC conversion technology, and the ultra-lift technique and hybrid split-capacitor/inductor applied in Super-Lift Luo-Converters are introduced in Chapters 7 and 8 in this edition. The authors have theoretically defined a new concept - Energy Factor (EF), researched the relations between EF and the mathematical modelling for power DC/DC converters, and demonstrated the modeling method for two converters in Chapter 9.

Recenzijas

"This book is an encyclopedic reference for DC/DC converters. It contains very clear and concise descriptions of DC/DC converters in use today. Anyone working or studying DC/DC converter technology would want to have this book as a standard reference source for making comparisons of various DC/DC converter topologies and for having the convenience of a one-source handbook to find all the information needed on a particular DC/DC converter design." IEEE Electrical Insulation Magazine, March/April 2019 Issue

Preface to the Second Edition xxi
Preface to the First Edition xxiii
Acknowledgments xxv
Authors xxvii
1 Introduction
1(36)
1.1 Historical Review
1(1)
1.2 Multiple-Quadrant Choppers
2(6)
1.2.1 Multiple-Quadrant Operation
2(1)
1.2.2 First-Quadrant Chopper
3(1)
1.2.3 Second-Quadrant Chopper
4(1)
1.2.4 Third-Quadrant Chopper
4(1)
1.2.5 Fourth-Quadrant Chopper
4(1)
1.2.6 First- and Second-Quadrant Chopper
5(2)
1.2.7 Third-Fourth-Quadrant Chopper
7(1)
1.2.8 Four-Quadrant Chopper
7(1)
1.3 Pump Circuits
8(8)
1.3.1 Fundamental Pumps
8(1)
1.3.1.1 Buck Pump
8(1)
1.3.1.2 Boost Pump
9(1)
1.3.1.3 Buck-Boost Pump
9(1)
1.3.2 Developed Pumps
9(1)
1.3.2.1 Positive Luo-Pump
10(1)
1.3.2.2 Negative Luo-Pump
10(1)
1.3.2.3 Cuk Pump
10(2)
1.3.3 Transformer-Type Pumps
12(1)
1.3.3.1 Forward Pump
12(1)
1.3.3.2 Flyback Pump
12(2)
1.3.3.3 ZETA Pump
14(1)
1.3.4 SL Pumps
14(1)
1.3.4.1 Positive Super Luo-Pump
14(1)
1.3.4.2 Negative Super Luo-Pump
15(1)
1.3.4.3 Positive Push-Pull Pump
15(1)
1.3.4.4 Negative Push-Pull Pump
15(1)
1.3.4.5 DEC
16(1)
1.4 Development of DC/DC Conversion Technique
16(16)
1.4.1 First-Generation Converters
17(2)
1.4.1.1 Fundamental Converters
19(3)
1.4.1.2 Transformer-Type Converters
22(3)
1.4.1.3 Developed Converters
25(3)
1.4.1.4 VL Converters
28(1)
1.4.1.5 SL Converters
28(1)
1.4.2 Second-Generation Converters
28(1)
1.4.3 Third-Generation Converters
29(1)
1.4.3.1 Switched-Capacitor Converters
29(1)
1.4.3.2 Multiple-Quadrant Switched-Capacitor Luo-Converters
29(1)
1.4.3.3 Multiple-Lift Push-Pull Switched-Capacitor Converters
30(1)
1.4.3.4 Switched-Inductor Converters
30(1)
1.4.4 Fourth-Generation Converters
30(1)
1.4.4.1 ZCS-QRCs
31(1)
1.4.4.2 ZVS-QRCs
31(1)
1.4.4.3 ZT Converters
31(1)
1.4.5 Fifth-Generation Converters
31(1)
1.4.6 Sixth-Generation Converters
32(1)
1.5 Categorizing Prototypes and DC/DC Converter Family Tree
32(5)
Bibliography
34(3)
2 Voltage-Lift Converters
37(156)
2.1 Introduction
37(1)
2.2 Seven Self-Lift Converters
38(26)
2.2.1 Self-Lift Cuk Converter
39(1)
2.2.1.1 Continuous Conduction Mode
40(3)
2.2.1.2 Discontinuous Conduction Mode
43(2)
2.2.2 Self-Lift P/O Luo-Converter
45(1)
2.2.2.1 Continuous Conduction Mode
45(3)
2.2.2.2 Discontinuous Conduction Mode
48(1)
2.2.3 Reverse Self-Lift P/O Luo-Converter
49(1)
2.2.3.1 Continuous Conduction Mode
49(2)
2.2.3.2 Discontinuous Conduction Mode
51(1)
2.2.4 Self-Lift N/O Luo-Converter
52(1)
2.2.4.1 Continuous Conduction Mode
52(2)
2.2.4.2 Discontinuous Conduction Mode
54(1)
2.2.5 Reverse Self-Lift N/O Luo-Converter
55(1)
2.2.5.1 Continuous Conduction Mode
55(2)
2.2.5.2 Discontinuous Conduction Mode
57(1)
2.2.6 Self-Lift SEPIC
58(1)
2.2.6.1 Continuous Conduction Mode
58(3)
2.2.6.2 Discontinuous Conduction Mode
61(1)
2.2.7 Enhanced Self-Lift P/O Luo-Converters
62(2)
2.3 P/O Luo-Converters
64(44)
2.3.1 Elementary Circuit
66(1)
2.3.1.1 Circuit Description
66(2)
2.3.1.2 Variations of Currents and Voltages
68(3)
2.3.1.3 Instantaneous Values of Currents and Voltages
71(1)
2.3.1.4 Discontinuous Conduction Mode
72(2)
2.3.1.5 Stability Analysis
74(1)
2.3.2 Self-Lift Circuit
75(1)
2.3.2.1 Circuit Description
76(2)
2.3.2.2 Average Current IC1 and Source Current Is
78(1)
2.3.2.3 Variations of Currents and Voltages
78(2)
2.3.2.4 Instantaneous Value of the Currents and Voltages
80(2)
2.3.2.5 Discontinuous Conduction Mode
82(1)
2.3.2.6 Stability Analysis
83(2)
2.3.3 Re-Lift Circuit
85(1)
2.3.3.1 Circuit Description
85(3)
2.3.3.2 Other Average Currents
88(1)
2.3.3.3 Variations of Currents and Voltages
88(3)
2.3.3.4 Instantaneous Value of the Currents and Voltages
91(2)
2.3.3.5 Discontinuous Conduction Mode
93(2)
2.3.3.6 Stability Analysis
95(2)
2.3.4 Multiple-Lift Circuits
97(1)
2.3.4.1 Triple-Lift Circuit
98(3)
2.3.4.2 Quadruple-Lift Circuit
101(3)
2.3.5 Summary
104(2)
2.3.6 Discussions
106(1)
2.3.6.1 Discontinuous Conduction Mode
106(2)
2.3.6.2 Output Voltage V0 versus Conduction Duty Cycle k
108(1)
2.3.6.3 Switching Frequency f
108(1)
2.4 N/O Luo-Converters
108(37)
2.4.1 Elementary Circuit
110(1)
2.4.1.1 Circuit Description
110(1)
2.4.1.2 Average Voltages and Currents
110(3)
2.4.1.3 Variations of Currents and Voltages
113(2)
2.4.1.4 Instantaneous Values of Currents and Voltages
115(1)
2.4.1.5 Discontinuous Mode
116(1)
2.4.2 Self-Lift Circuit
117(1)
2.4.2.1 Circuit Description
117(2)
2.4.2.2 Average Voltages and Currents
119(2)
2.4.2.3 Variations of Currents and Voltages
121(2)
2.4.2.4 Instantaneous Value of the Currents and Voltages
123(1)
2.4.2.5 Discontinuous Mode
124(1)
2.4.3 Re-Lift Circuit
125(2)
2.4.3.1 Circuit Description
127(1)
2.4.3.2 Average Voltages and Currents
127(1)
2.4.3.3 Variations of Currents and Voltages
128(3)
2.4.3.4 Instantaneous Values of the Currents and Voltages
131(2)
2.4.3.5 Discontinuous Mode
133(2)
2.4.4 Multiple-Lift Circuits
135(1)
2.4.4.1 Triple-Lift Circuit
135(3)
2.4.4.2 Quadruple-Lift Circuit
138(4)
2.4.5 Summary
142(3)
2.5 Modified P/O Luo-Converters
145(8)
2.5.1 Elementary Circuit
145(1)
2.5.2 Self-Lift Circuit
146(1)
2.5.3 Re-Lift Circuit
147(3)
2.5.4 Multiple-Lift Circuit
150(3)
2.5.5 Application
153(1)
2.6 Double-Output Luo-Converters
153(40)
2.6.1 Elementary Circuit
155(1)
2.6.1.1 Positive Conversion Path
155(2)
2.6.1.2 Negative Conversion Path
157(2)
2.6.1.3 Discontinuous Mode
159(2)
2.6.2 Self-Lift Circuit
161(1)
2.6.2.1 Positive Conversion Path
162(2)
2.6.2.2 Negative Conversion Path
164(2)
2.6.2.3 Discontinuous Conduction Mode
166(2)
2.6.3 Re-Lift Circuit
168(1)
2.6.3.1 Positive Conversion Path
169(2)
2.6.3.2 Negative Conversion Path
171(3)
2.6.3.3 Discontinuous Conduction Mode
174(1)
2.6.4 Multiple-Lift Circuit
175(1)
2.6.4.1 Triple-Lift Circuit
176(5)
2.6.4.2 Quadruple-Lift Circuit
181(6)
2.6.5 Summary
187(1)
2.6.5.1 Positive Conversion Path
187(1)
2.6.5.2 Negative Conversion Path
188(1)
2.6.5.3 Common Parameters
189(2)
Bibliography
191(2)
3 Positive-Output Super-Lift Luo-Converters
193(42)
3.1 Introduction
193(1)
3.2 Main Series
194(6)
3.2.1 Elementary Circuit
194(3)
3.2.2 Re-Lift Circuit
197(1)
3.2.3 Triple-Lift Circuit
198(1)
3.2.4 Higher-Order Lift Circuit
199(1)
3.3 Additional Series
200(7)
3.3.1 Elementary Additional Circuit
200(3)
3.3.2 Re-Lift Additional Circuit
203(2)
3.3.3 Triple-Lift Additional Circuit
205(1)
3.3.4 Higher-Order Lift Additional Circuit
206(1)
3.4 Enhanced Series
207(5)
3.4.1 Elementary Enhanced Circuit
208(1)
3.4.2 Re-Lift Enhanced Circuit
209(1)
3.4.3 Triple-Lift Enhanced Circuit
210(1)
3.4.4 Higher-Order Lift Enhanced Circuit
211(1)
3.5 Re-Enhanced Series
212(7)
3.5.1 Elementary Re-Enhanced Circuit
212(4)
3.5.2 Re-Lift Re-Enhanced Circuit
216(1)
3.5.3 Triple-Lift Re-Enhanced Circuit
217(2)
3.5.4 Higher-Order Lift Re-Enhanced Circuit
219(1)
3.6 Multiple-Enhanced Series
219(8)
3.6.1 Elementary Multiple-Enhanced Circuit
220(4)
3.6.2 Re-Lift Multiple-Enhanced Circuit
224(1)
3.6.3 Triple-Lift Multiple-Enhanced Circuit
225(1)
3.6.4 Higher-Order Lift Multiple-Enhanced Circuit
226(1)
3.7 Summary of Positive-Output Super-Lift Luo-Converters
227(3)
3.8 Simulation Results
230(1)
3.8.1 Simulation Results of a Triple-Lift Circuit
230(1)
3.8.2 Simulation Results of a Triple-Lift Additional Circuit
230(1)
3.9 Experimental Results
230(5)
3.9.1 Experimental Results of a Triple-Lift Circuit
232(1)
3.9.2 Experimental Results of a Triple-Lift Additional Circuit
232(1)
3.9.3 Efficiency Comparison of Simulation and Experimental Results
232(1)
References
233(2)
4 Negative-Output Super-Lift Luo-Converters
235(42)
4.1 Introduction
235(1)
4.2 Main Series
235(8)
4.2.1 Elementary Circuit
236(3)
4.2.2 N/O Re-Lift Circuit
239(1)
4.2.3 N/O Triple-Lift Circuit
240(3)
4.2.4 N/O Higher-Order Lift Circuit
243(1)
4.3 Additional Series
243(9)
4.3.1 N/O Elementary Additional Circuit
243(4)
4.3.2 N/O Re-Lift Additional Circuit
247(2)
4.3.3 N/O Triple-Lift Additional Circuit
249(2)
4.3.4 N/O Higher-Order Lift Additional Circuit
251(1)
4.4 Enhanced Series
252(7)
4.4.1 N/O Elementary Enhanced Circuit
252(1)
4.4.2 N/O Re-Lift Enhanced Circuit
253(3)
4.4.3 N/O Triple-Lift Enhanced Circuit
256(3)
4.4.4 N/O Higher-Order Lift Enhanced Circuit
259(1)
4.5 Re-Enhanced Series
259(6)
4.5.1 N/O Elementary Re-Enhanced Circuit
259(4)
4.5.2 N/O Re-Lift Re-Enhanced Circuit
263(1)
4.5.3 N/O Triple-Lift Re-Enhanced Circuit
264(1)
4.5.4 N/O Higher-Order Lift Re-Enhanced Circuit
264(1)
4.6 Multiple-Enhanced Series
265(5)
4.6.1 N/O Elementary Multiple-Enhanced Circuit
265(4)
4.6.2 N/O Re-Lift Multiple-Enhanced Circuit
269(1)
4.6.3 N/O Triple-Lift Multiple-Enhanced Circuit
269(1)
4.6.4 N/O Higher-Order Lift Multiple-Enhanced Circuit
270(1)
4.7 Summary of Negative-Output Super-Lift Luo-Converters
270(3)
4.8 Simulation Results
273(1)
4.8.1 Simulation Results of an N/O Triple-Lift Circuit
273(1)
4.8.2 Simulation Results of an N/O Triple-Lift Additional Circuit
274(1)
4.9 Experimental Results
274(3)
4.9.1 Experimental Results of an N/O Triple-Lift Circuit
274(1)
4.9.2 Experimental Results of an N/O Triple-Lift Additional Circuit
274(1)
4.9.3 Efficiency Comparison of Simulation and Experimental Results
275(1)
4.9.4 Transient Process and Stability Analysis
276(1)
Bibliography
276(1)
5 Positive-Output Cascaded Boost Converters
277(34)
5.1 Introduction
277(1)
5.2 Main Series
277(6)
5.2.1 Elementary Boost Circuit
278(2)
5.2.2 Two-Stage Boost Circuit
280(1)
5.2.3 Three-Stage Boost Circuit
281(1)
5.2.4 Higher-Stage Boost Circuit
282(1)
5.3 Additional Series
283(6)
5.3.1 Elementary Boost Additional (Double) Circuit
283(2)
5.3.2 Two-Stage Boost Additional Circuit
285(2)
5.3.3 Three-Stage Boost Additional Circuit
287(1)
5.3.4 Higher-Stage Boost Additional Circuit
288(1)
5.4 Double Series
289(5)
5.4.1 Elementary Double Boost Circuit
289(1)
5.4.2 Two-Stage Double Boost Circuit
289(3)
5.4.3 Three-Stage Double Boost Circuit
292(1)
5.4.4 Higher-Stage Double Boost Circuit
293(1)
5.5 Triple Series
294(6)
5.5.1 Elementary Triple Boost Circuit
294(1)
5.5.2 Two-Stage Triple Boost Circuit
295(3)
5.5.3 Three-Stage Triple Boost Circuit
298(1)
5.5.4 Higher-Stage Triple Boost Circuit
299(1)
5.6 Multiple Series
300(5)
5.6.1 Elementary Multiple Boost Circuit
300(1)
5.6.2 Two-Stage Multiple Boost Circuit
301(3)
5.6.3 Three-Stage Multiple Boost Circuit
304(1)
5.6.4 Higher-Stage Multiple Boost Circuit
305(1)
5.7 Summary of Positive-Output Cascaded Boost Converters
305(3)
5.8 Simulation and Experimental Results
308(3)
5.8.1 Simulation Results of a Three-Stage Boost Circuit
308(1)
5.8.2 Experimental Results of a Three-Stage Boost Circuit
309(1)
5.8.3 Efficiency Comparison of Simulation and Experimental Results
310(1)
5.8.4 Transient Process
310(1)
Bibliography
310(1)
6 Negative-Output Cascaded Boost Converters
311(34)
6.1 Introduction
311(1)
6.2 Main Series
311(6)
6.2.1 N/O Elementary Boost Circuit
311(3)
6.2.2 N/O Two-Stage Boost Circuit
314(1)
6.2.3 N/O Three-Stage Boost Circuit
315(1)
6.2.4 N/O Higher-Stage Boost Circuit
316(1)
6.3 Additional Series
317(6)
6.3.1 N/O Elementary Additional Boost Circuit
317(2)
6.3.2 N/O Two-Stage Additional Boost Circuit
319(2)
6.3.3 N/O Three-Stage Additional Boost Circuit
321(1)
6.3.4 N/O Higher-Stage Additional Boost Circuit
322(1)
6.4 Double Series
323(4)
6.4.1 N/O Elementary Double Boost Circuit
323(1)
6.4.2 N/O Two-Stage Double Boost Circuit
323(2)
6.4.3 N/O Three-Stage Double Boost Circuit
325(2)
6.4.4 N/O Higher-Stage Double Boost Circuit
327(1)
6.5 Triple Series
327(6)
6.5.1 N/O Elementary Triple Boost Circuit
328(1)
6.5.2 N/O Two-Stage Triple Boost Circuit
329(2)
6.5.3 N/O Three-Stage Triple Boost Circuit
331(2)
6.5.4 N/O Higher-Stage Triple Boost Circuit
333(1)
6.6 Multiple Series
333(5)
6.6.1 N/O Elementary Multiple Boost Circuit
333(1)
6.6.2 N/O Two-Stage Multiple Boost Circuit
334(3)
6.6.3 N/O Three-Stage Multiple Boost Circuit
337(1)
6.6.4 N/O Higher-Stage Multiple Boost Circuit
337(1)
6.7 Summary of N/O Cascaded Boost Converters
338(3)
6.8 Simulation and Experimental Results
341(4)
6.8.1 Simulation Results of a Three-Stage Boost Circuit
341(1)
6.8.2 Experimental Results of a Three-Stage Boost Circuit
341(1)
6.8.3 Efficiency Comparison of Simulation and Experimental Results
341(1)
6.8.4 Transient Process
342(1)
Bibliography
342(3)
7 Ultra-Lift Luo-Converter
345(14)
7.1 Introduction
345(1)
7.2 Operation of Ultra-Lift Luo-Converter
346(6)
7.2.1 Continuous Conduction Mode
347(3)
7.2.2 Discontinuous Conduction Mode
350(2)
7.3 Instantaneous Values
352(3)
7.3.1 Continuous Conduction Mode
352(2)
7.3.2 Discontinuous Conduction Mode
354(1)
7.4 Comparison of the Gain to Other Converters' Gains
355(1)
7.5 Simulation Results
356(1)
7.6 Experimental Results
357(1)
7.7 Summary
358(1)
Bibliography
358(1)
8 Hybrid Split Capacitors and Split Inductors Applied in Positive-Output Super-Lift Luo-Converters
359(20)
8.1 Introduction
359(1)
8.2 Split Capacitors and Split Inductors
360(1)
8.2.1 Split Capacitors
360(1)
8.2.2 Split Inductors
360(1)
8.3 Split Capacitors and Split Inductors Applied in the P/O Elementary Super-Lift Luo-Converter
361(4)
8.3.1 Two Split Capacitors (α = 2) Applied in the P/O Elementary SL Circuit
362(1)
8.3.2 Two Split Inductors (β = 2) Applied in the Elementary P/O SL Circuit
362(2)
8.3.3 A Split Capacitors and p Split Inductors Applied in the Elementary P/O SL Circuit
364(1)
8.4 Main Series
365(2)
8.5 MEC, Split Capacitors Used in DEC
367(1)
8.6 Additional Series
368(3)
8.6.1 Elementary Additional Circuit
368(2)
8.6.2 Re-Lift Additional Circuit
370(1)
8.6.3 Triple-Lift Additional Circuit
370(1)
8.6.4 Higher-Order Lift Additional Circuits
371(1)
8.7 Synthesis of Main Series and Additional Series P/O SL Luo-Converters
371(1)
8.8 Simulation Results
372(2)
8.8.1 Simulation Results of a Re-Lift Circuit
372(1)
8.8.2 Simulation Results of a Triple-Lift Circuit
372(1)
8.8.3 Simulation Results of a Re-Lift Additional Circuit
372(2)
8.8.4 Simulation Results of a Triple-Lift Additional Circuit
374(1)
8.9 Experimental Result
374(1)
8.9.1 Experimental Results of a Re-Lift Circuit
374(1)
8.9.2 Experimental Results of a Triple-Lift Circuit
374(1)
8.9.3 Experimental Results of a Re-Lift Additional Circuit
375(1)
8.9.4 Experimental Results of a Triple-Lift Additional Circuit
375(1)
8.10 Transient Process Waveforms
375(1)
8.11 Summary
376(3)
Bibliography
376(3)
9 Mathematical Modeling of Power DC/DC Converters
379(28)
9.1 Introduction
379(10)
9.2 Energy Factor and Relevant Parameters
389(4)
9.3 Applications of Parameters
393(1)
9.3.1 Power Efficiency η
393(1)
9.3.2 System Stability
393(1)
9.3.3 Time Constant τ of a Power DC/DC Converter
393(1)
9.3.4 Damping Time Constant τd of a Power DC/DC Converter
394(1)
9.4 Transfer Function of Power DC/DC Converters
394(5)
9.4.1 Very Small Variation of Storage Energy
394(1)
9.4.2 Small Variation of Storage Energy
395(2)
9.4.3 Critical Variation of Storage Energy
397(1)
9.4.4 Large Variation of Storage Energy
397(2)
9.4.5 Explanation of This Mathematical Modeling
399(1)
9.5 Design Examples of This Theory
399(5)
9.5.1 Buck Converter
400(2)
9.5.2 Super-Lift Luo-Converter
402(2)
9.6 Summary
404(3)
Bibliography
404(3)
10 Multiple-Quadrant Operating Luo-Converters
407(26)
10.1 Introduction
407(1)
10.2 Circuit Explanation
408(5)
10.2.1 Mode A
409(1)
10.2.2 Mode B
410(1)
10.2.3 Mode C
411(1)
10.2.4 Mode D
411(1)
10.2.5 Summary
412(1)
10.3 Mode A (Quadrant I Operation)
413(3)
10.3.1 Circuit Description
413(2)
10.3.2 Variations of Currents and Voltages
415(1)
10.3.3 Discontinuous Region
416(1)
10.4 Mode B (Quadrant H Operation)
416(4)
10.4.1 Circuit Description
416(2)
10.4.2 Variations of Currents and Voltages
418(1)
10.4.3 Discontinuous Region
419(1)
10.5 Mode C (Quadrant III Operation)
420(3)
10.5.1 Circuit Description
420(2)
10.5.2 Variations of Currents and Voltages
422(1)
10.5.3 Discontinuous Region
423(1)
10.6 Mode D (Quadrant IV Operation)
423(4)
10.6.1 Circuit Description
424(1)
10.6.2 Variations of Currents and Voltages
425(2)
10.6.3 Discontinuous Region
427(1)
10.7 Simulation Results
427(2)
10.8 Experimental Results
429(1)
10.9 Discussion
430(3)
10.9.1 Discontinuous Conduction Mode
430(1)
10.9.2 Comparison with the Double-Output Luo-Converter
431(1)
10.9.3 Conduction Duty k
431(1)
10.9.4 Switching Frequency f
431(1)
Bibliography
431(2)
11 Switched-Component Converters
433(44)
11.1 Introduction
433(1)
11.2 Two-Quadrant SC DC/DC Converter
434(8)
11.2.1 Circuit Description
434(1)
11.2.1.1 Mode A
435(1)
11.2.1.2 Mode B
435(1)
11.2.2 Mode A (Quadrant I Operation)
436(3)
11.2.3 Mode B (Quadrant II Operation)
439(2)
11.2.4 Experimental Results
441(1)
11.2.5 Discussion
441(1)
11.2.5.1 Efficiency
441(1)
11.2.5.2 Conduction Duty k
441(1)
11.2.5.3 Switching Frequency f
442(1)
11.3 Four-Quadrant Switched-Capacitor DC/DC Luo-Converter
442(14)
11.3.1 Mode A (QI: Forward Motoring)
447(1)
11.3.1.1 Mode A1: Condition V1 > V2
447(2)
11.3.1.2 Mode A2: Condition V1 < V2
449(2)
11.3.1.3 Experimental Results
451(1)
11.3.2 Mode B (QII: Forward Regenerative Braking)
452(1)
11.3.2.1 Mode B1: Condition V1 > V2
452(2)
11.3.2.2 Mode B2: Condition V1 < V2
454(2)
11.3.3 Mode C (QIII: Reverse Motoring)
456(1)
11.3.4 Mode D (QIV: Reverse Regenerative Braking)
456(1)
11.4 Switched-Inductor Four-Quadrant DC/DC Luo-Converter
456(21)
11.4.1 Mode A (QI: Forward Motoring)
459(1)
11.4.1.1 Continuous Mode
459(2)
11.4.1.2 Discontinuous Mode
461(2)
11.4.2 Mode B (QII: Forward Regenerative Braking)
463(1)
11.4.2.1 Continuous Mode
463(1)
11.4.2.2 Discontinuous Mode
464(3)
11.4.3 Mode C (QIII: Reverse Motoring)
467(1)
11.4.3.1 Continuous Mode
467(1)
11.4.3.2 Discontinuous Mode
468(2)
11.4.4 Mode D (QIV: Reverse Regenerative Braking)
470(1)
11.4.4.1 Continuous Mode
470(2)
11.4.4.2 Discontinuous Mode
472(2)
11.4.5 Experimental Results
474(1)
Bibliography
474(3)
12 Positive-Output Multiple-Lift Push-Pull Switched-Capacitor Luo-Converters
477(26)
12.1 Introduction
477(1)
12.2 Main Series
478(2)
12.2.1 Elementary Circuit
478(1)
12.2.2 Re-Lift Circuit
478(1)
12.2.3 Triple-Lift Circuit
479(1)
12.2.4 Higher-Order Lift Circuit
480(1)
12.3 Additional Series
480(4)
12.3.1 Elementary Additional Circuit
481(1)
12.3.2 Re-Lift Additional Circuit
481(1)
12.3.3 Triple-Lift Additional Circuit
482(1)
12.3.4 Higher-Order Lift Additional Circuit
483(1)
12.4 Enhanced Series
484(3)
12.4.1 Elementary Enhanced Circuit
484(2)
12.4.2 Re-Lift Enhanced Circuit
486(1)
12.4.3 Triple-Lift Enhanced Circuit
486(1)
12.4.4 Higher-Order Enhanced Lift Circuit
486(1)
12.5 Re-Enhanced Series
487(3)
12.5.1 Elementary Re-Enhanced Circuit
488(2)
12.5.2 Re-Lift Re-Enhanced Circuit
490(1)
12.5.3 Triple-Lift Re-Enhanced Circuit
490(1)
12.5.4 Higher-Order Lift Re-Enhanced Circuit
490(1)
12.6 Multiple-Enhanced Series
490(5)
12.6.1 Elementary Multiple-Enhanced Circuit
491(3)
12.6.2 Re-Lift Multiple-Enhanced Circuit
494(1)
12.6.3 Triple-Lift Multiple-Enhanced Circuit
494(1)
12.6.4 Higher-Order Lift Multiple-Enhanced Circuit
494(1)
12.7 Theoretical Analysis
495(2)
12.8 Summary of This Technique
497(1)
12.9 Simulation Results
497(1)
12.9.1 Triple-Lift Circuit
497(1)
12.9.2 Triple-Lift Additional Circuit
497(1)
12.10 Experimental Result
498(5)
12.10.1 Triple-Lift Circuit
498(1)
12.10.2 Triple-Lift Additional Circuit
498(3)
Bibliography
501(2)
13 Negative-Output Multiple-Lift Push-Pull Switched-Capacitor Luo-Converters
503(22)
13.1 Introduction
503(1)
13.2 Main Series
504(2)
13.2.1 N/O Elementary Circuit
504(1)
13.2.2 N/O Re-Lift Circuit
504(1)
13.2.3 N/O Triple-Lift Circuit
505(1)
13.2.4 N/O Higher-Order Lift Circuit
506(1)
13.3 Additional Series
506(4)
13.3.1 N/O Elementary Additional Circuit
507(1)
13.3.2 N/O Re-Lift Additional Circuit
508(1)
13.3.3 N/O Triple-Lift Additional Circuit
509(1)
13.3.4 N/O Higher-Order Lift Additional Circuit
510(1)
13.4 Enhanced Series
510(2)
13.4.1 N/O Elementary Enhanced Circuit
510(1)
13.4.2 N/O Re-Lift Enhanced Circuit
510(1)
13.4.3 N/O Triple-Lift Enhanced Circuit
511(1)
13.4.4 N/O Higher-Order Lift Enhanced Circuit
512(1)
13.5 Re-Enhanced Series
512(5)
13.5.1 N/O Elementary Re-Enhanced Circuit
513(3)
13.5.2 N/O Re-Lift Re-Enhanced Circuit
516(1)
13.5.3 N/O Triple-Lift Re-Enhanced Circuit
516(1)
13.5.4 N/O Higher-Order Lift Re-Enhanced Circuit
516(1)
13.6 Multiple-Enhanced Series
517(4)
13.6.1 N/O Elementary Multiple-Enhanced Circuit
519(1)
13.6.2 N/O Re-Lift Multiple-Enhanced Circuit
519(1)
13.6.3 N/O Triple-Lift Multiple-Enhanced Circuit
519(2)
13.6.4 N/O Higher-Order Lift Multiple-Enhanced Circuit
521(1)
13.7 Summary of This Technique
521(1)
13.8 Simulation and Experimental Results
521(4)
13.8.1 Simulation Results
521(2)
13.8.2 Experimental Results
523(1)
Bibliography
523(2)
14 Multiple-Quadrant Soft-Switching Converters
525(42)
14.1 Introduction
525(1)
14.2 Multiple-Quadrant DC/DC ZCS Quasi-Resonant Luo-Converters
526(13)
14.2.1 Mode A
528(1)
14.2.1.1 Interval t = 0-t1
529(1)
14.2.1.2 Interval t = t1-t2
529(1)
14.2.1.3 Interval t = t2-t3
530(1)
14.2.1.4 Interval t = t3-t4
530(1)
14.2.2 Mode B
531(1)
14.2.2.1 Interval t = 0-t1
532(1)
14.2.2.2 Interval t = t1-t2
532(1)
14.2.2.3 Interval t = t2-t3
532(1)
14.2.2.4 Interval t = t3-t4
533(1)
14.2.3 Mode C
533(1)
14.2.3.1 Interval t = 0-t1
534(1)
14.2.3.2 Interval t = t1-t2
535(1)
14.2.3.3 Interval t = t2-t3
535(1)
14.2.3.4 Interval t = t3-t4
535(1)
14.2.4 Mode D
536(1)
14.2.4.1 Interval t = 0-t1
537(1)
14.2.4.2 Interval t = t1-t2
537(1)
14.2.4.3 Interval t = t2-t3
538(1)
14.2.4.4 Interval t = t3-t4
538(1)
14.2.5 Experimental Results
538(1)
14.3 Multiple-Quadrant DC/DC ZVS Quasi-Resonant Luo-Converters
539(13)
14.3.1 Mode A
541(1)
14.3.1.1 Interval t = 0-t1
541(1)
14.3.1.2 Interval t = t1-t2
542(1)
14.3.1.3 Interval t = t2-t3
543(1)
14.3.1.4 Interval t = t3-t4
543(1)
14.3.2 Mode B
543(1)
14.3.2.1 Interval t = 0-t1
544(1)
14.3.2.2 Interval t = t1-t2
545(1)
14.3.2.3 Interval t = t2-t3
545(1)
14.3.2.4 Interval t = t3-t4
545(1)
14.3.3 Mode C
546(1)
14.3.3.1 Interval t = 0-t1
547(1)
14.3.3.2 Interval t = t1-12
547(1)
14.3.3.3 Interval t = t2-t3
548(1)
14.3.3.4 Interval t = t3-t4
548(1)
14.3.4 Mode D
549(1)
14.3.4.1 Interval t = 0-t1
550(1)
14.3.4.2 Interval t = t1-t2
550(1)
14.3.4.3 Interval t = t2-t3
550(1)
14.3.4.4 Interval t = t3-t4
550(1)
14.3.5 Experimental Results
551(1)
14.4 Multiple-Quadrant ZT DC/DC Luo-Converters
552(15)
14.4.1 Mode A (Quadrant I Operation)
553(2)
14.4.2 Mode B (Quadrant II Operation)
555(2)
14.4.3 Mode C (Quadrant III Operation)
557(1)
14.4.4 Mode D (Quadrant IV Operation)
558(1)
14.4.5 Simulation Results
558(1)
14.4.6 Experimental Results
559(1)
14.4.7 Design Considerations
560(4)
Bibliography
564(3)
15 Synchronous Rectifier DC/DC Converters
567(16)
15.1 Introduction
568(2)
15.2 Flat Transformer Synchronous Rectifier Luo-Converter
570(2)
15.2.1 Transformer Is in Magnetizing Process
571(1)
15.2.2 Switching-On
571(1)
15.2.3 Transformer Is in Demagnetizing Process
571(1)
15.2.4 Switching-Off
572(1)
15.2.5 Summary
572(1)
15.3 Active-Clamped Synchronous Rectifier Luo-Converter
572(2)
15.3.1 Transformer Is in Magnetizing Process
573(1)
15.3.2 Switching-On
573(1)
15.3.3 Transformer Is in Demagnetizing Process
574(1)
15.3.4 Switching-Off
574(1)
15.3.5 Summary
574(1)
15.4 Double-Current Synchronous Rectifier Luo-Converter
574(2)
15.4.1 Transformer Is in Magnetizing Process
575(1)
15.4.2 Switching-On
575(1)
15.4.3 Transformer Is in Demagnetizing Process
576(1)
15.4.4 Switching-Off
576(1)
15.4.5 Summary
576(1)
15.5 Zero-Current-Switching Synchronous Rectifier Luo-Converter
576(3)
15.5.1 Transformer Is in Magnetizing Process
577(1)
15.5.2 Resonant Period
578(1)
15.5.3 Transformer Is in Demagnetizing Process
578(1)
15.5.4 Switching-Off
578(1)
15.5.5 Summary
578(1)
15.6 Zero-Voltage-Switching Synchronous Rectifier Luo-Converter
579(4)
15.6.1 Transformer Is in Magnetizing Process
579(1)
15.6.2 Resonant Period
580(1)
15.6.3 Transformer Is in Demagnetizing Process
580(1)
15.6.4 Switching-Off
580(1)
15.6.5 Summary
580(1)
Bibliography
581(2)
16 Multiple-Energy-Storage-Element Resonant Power Converters
583(22)
16.1 Introduction
583(9)
16.1.1 Two-Element RPC
583(1)
16.1.2 Three-Element RPC
584(1)
16.1.3 Four-Element RPC
584(8)
16.2 Bipolar Current and Voltage Sources
592(2)
16.2.1 Bipolar Voltage Source
592(1)
16.2.1.1 Two-Voltage Source Circuit
592(1)
16.2.1.2 One-Voltage Source Circuit
593(1)
16.2.2 Bipolar Current Source
593(1)
16.2.2.1 Two-Voltage Source Circuit
593(1)
16.2.2.2 One-Voltage Source Circuit
594(1)
16.3 Two-Element RPC Analysis
594(11)
16.3.1 Input Impedance
595(1)
16.3.2 Current Transfer Gain
596(1)
16.3.3 Operation Analysis
597(3)
16.3.4 Simulation Results
600(2)
16.3.5 Experimental Results
602(1)
Bibliography
602(3)
17 II-CLL Current Source Resonant Inverter
605(14)
17.1 Introduction
605(2)
17.1.1 Pump Circuits
605(1)
17.1.2 Current Source
605(1)
17.1.3 Resonant Circuit
605(1)
17.1.4 Load
606(1)
17.1.5 Summary
606(1)
17.2 Mathematical Analysis
607(9)
17.2.1 Input Impedance
607(1)
17.2.2 Components' Voltages and Currents
607(2)
17.2.3 Simplified Impedance and Current Gain
609(7)
17.2.4 Power Transfer Efficiency
616(1)
17.3 Simulation Results
616(1)
17.4 Discussion
617(2)
17.4.1 Function of the II-CLL Circuit
617(1)
17.4.2 Applying Frequency to This II-CLL CSRI
618(1)
17.4.3 Explanation of g > 1
618(1)
17.4.4 DC Current Component Remaining
618(1)
17.4.5 Efficiency
618(1)
Bibliography
618(1)
18 Cascade Double Γ-CL Current Source Resonant Inverter
619(16)
18.1 Introduction
619(1)
18.2 Mathematical Analysis
619(10)
18.2.1 Input Impedance
620(1)
18.2.2 Components' Voltages and Currents
620(1)
18.2.3 Simplified Impedance and Current Gain
621(6)
18.2.4 Power Transfer Efficiency
627(2)
18.3 Simulation Result
629(2)
18.3.1 β = 1, ƒ = 33.9 kHz, and T = 29.5 μs
629(1)
18.3.2 β = 1.4142, ƒ = 48.0 kHz, and T = 20.83 μs
630(1)
18.3.3 β = 1.59, ƒ = 54 kHz, and T = 18.52 μs
630(1)
18.4 Experimental Result
631(1)
18.5 Discussion
632(3)
18.5.1 Function of the Double Γ-CL Circuit
632(1)
18.5.2 Applying Frequency to This Double Γ-CL CSRI
632(2)
18.5.3 Explanation of g > 1
634(1)
Bibliography
634(1)
19 Cascade Reverse Double Γ-LC Resonant Power Converter
635(38)
19.1 Introduction
635(1)
19.2 Steady-State Analysis of Cascade Reverse Double Γ-LC RPC
636(9)
19.2.1 Topology and Circuit Description
636(1)
19.2.2 Classical Analysis on AC Side
636(1)
19.2.2.1 Basic Operating Principles
637(1)
19.2.2.2 Equivalent Load Resistance
637(1)
19.2.2.3 Equivalent AC Circuit and Transfer Functions
638(1)
19.2.2.4 Analysis of Voltage Transfer Gain and the Input Impedance
639(5)
19.2.3 Simulation and Experiment Results
644(1)
19.2.3.1 Simulation Studies
644(1)
19.2.3.2 Experimental Results
644(1)
19.3 Resonance Operation and Modeling
645(6)
19.3.1 Operating Principle, Operating Modes, and Equivalent Circuits
646(1)
19.3.2 State-Space Analysis
647(4)
19.4 Small-Signal Modeling of Cascade Reverse Double Γ-LC RPC
651(11)
19.4.1 Small-Signal Modeling Analysis
651(1)
19.4.1.1 Model Diagram
651(1)
19.4.1.2 Nonlinear State Equation
651(1)
19.4.1.3 Harmonic Approximation
652(1)
19.4.1.4 Extended Describing Function
653(1)
19.4.1.5 Harmonic Balance
654(1)
19.4.1.6 Perturbation and Linearization
655(1)
19.4.1.7 Equivalent Circuit Model
655(1)
19.4.2 Closed-Loop Control System Design
656(6)
19.5 Discussion
662(11)
19.5.1 Characteristics of Variable-Parameter Resonant Converter
662(3)
19.5.2 DCM
665(6)
Appendix: Parameters Used in Small-Signal Modeling
671(1)
Bibliography
672(1)
20 DC Energy Sources for DC/DC Converters
673(40)
20.1 Introduction
673(1)
20.2 Single-Phase Half-Wave Diode Rectifier
673(12)
20.2.1 Resistive Load
674(1)
20.2.2 Single-Phase Half-Wave Rectifier with a Capacitive Filter
675(3)
20.2.3 Inductive Load
678(3)
20.2.4 Pure Inductive Load
681(1)
20.2.5 Back EMF plus Resistor Load
682(1)
20.2.6 Back EMF plus Inductor Load
683(2)
20.3 Single-Phase Bridge Diode Rectifier
685(7)
20.3.1 Resistive Load
685(2)
20.3.2 Back EMF Load
687(2)
20.3.3 R-C Load
689(3)
20.4 Three-Phase Half-Bridge Diode Rectifier
692(3)
20.4.1 Resistive Load
692(1)
20.4.2 Back EMF Load (0.5 √2Vin < E < √2Vin)
693(1)
20.4.3 Back EMF Load (E < 0.5 √2Vin)
694(1)
20.5 Three-Phase Full-Bridge Diode Rectifier with Resistive Load
695(2)
20.6 Thyristor Rectifiers
697(16)
20.6.1 Single-Phase Half-Wave Rectifier with Resistive Load
697(1)
20.6.2 Single-Phase Half-Wave Thyristor Rectifier with Inductive Load
698(1)
20.6.3 Single-Phase Half-Wave Thyristor Rectifier with Pure Inductive Load
699(1)
20.6.4 Single-Phase Half-Wave Rectifier with Back EMF plus Resistive Load
700(1)
20.6.5 Single-Phase Half-Wave Rectifier with Back EMF plus Inductive Load
701(1)
20.6.6 Single-Phase Half-Wave Rectifier with Back EMF Plus Pure Inductor
702(2)
20.6.7 Single-Phase Full-Wave Semicontrolled Rectifier with Inductive Load
704(1)
20.6.8 Single-Phase Full-Controlled Rectifier with Inductive Load
705(1)
20.6.9 Three-Phase Half-Wave Rectifier with Resistive Load
706(1)
20.6.10 Three-Phase Half-Wave Thyristor Rectifier with Inductive Load
707(1)
20.6.11 Three-Phase Full-Wave Thyristor Rectifier with Resistive Load
708(2)
20.6.12 Three-Phase Full-Wave Thyristor Rectifier with Inductive Load
710(1)
Bibliography
711(2)
21 Control Circuit: EMI and Application Examples of DC/DC Converters
713(16)
21.1 Introduction
713(1)
21.2 Luo-Resonator
713(3)
21.2.1 Circuit Explanation
714(1)
21.2.2 Calculation Formulae
715(1)
21.2.3 Design Example
716(1)
21.2.4 Discussion
716(1)
21.3 EMI, EMS, and EMC
716(6)
21.3.1 EMI/EMC Analysis
716(2)
21.3.2 Comparison with Hard Switching and Soft Switching
718(1)
21.3.3 Measuring Method and Results
718(4)
21.3.4 Designing Rule to Minimize EMI/EMC
722(1)
21.4 Some DC/DC Converter Applications
722(7)
21.4.1 5000 V Insulation Test Bench
722(1)
21.4.2 MIT 42/14 V 3 kW DC/DC Converter
723(2)
21.4.3 IBM 1.8 V/200 A Power Supply
725(2)
Bibliography
727(2)
Index 729
Professor Fang Lin Luo is currently working as both a professor at AnHui University, HeFei, China and the director of the Research Institute of "Renewable Energy and Power Electronics." He has held a joint position in Nanyang Technological University (NTU), Singapore since 2012. Previously, he was an associate professor with the School of Electrical and Electronic Engineering, NTU. He received his B.Sc. Degree, First Class with Honors (magna cum laude) in Radio-Electronic Physics at the Sichuan University, Chengdu, China, and his Ph. D. Degree in Electrical Engineering and Computer Science (EE & CS) at Cambridge University, England, UK in 1986.



After his graduation from Sichuan University, he joined the Chinese Automation Research Institute of Metallurgy (CARIM), Beijing, China as a Senior Engineer. From 1981-1982, he went to the Entreprises Saunier Duval, Paris, France as a project engineer. Prof. Luo was with Hocking NDT Ltd, Allen-Bradley IAP Ltd. and Simplatroll Ltd. in England as a Senior Engineer after he received his Ph. D. Degree from Cambridge University. He is a Fellow of Cambridge Philosophical Society, and a Senior Member of IEEE. He has published 15 books and more than 300 technical papers in IEE/IET Proceedings and IEEE Transactions, and various International Conferences.









Professor Luos present research interest is in: Power Electronics and DC & AC Motor Drives with Computerized Artificial Intelligent Control (AIC) and Digital Signal Processing (DSP); AC/DC & DC/DC & AC/AC Converters and DC/AC Inverters; Renewable Energy Systems and Electrical Vehicles. He is currently the Associate Editor of the IEEE Transactions on Power Electronics and the Associate Editor of IEEE Transactions on Industrial Electronics. He is also the International Editor of International journal Advanced Technology of Electrical Engineering and Energy. Professor Luo was the Chief Editor of International journal Power Supply Technologies and Applications between 1998 - 2003. He is the general Chairman of both the First IEEE Conference on Industrial Electronics and Applications (ICIEA2006) and the Third IEEE Conference on Industrial Electronics and Applications (ICIEA2008).



Dr. Hong Ye (S'00-M'03) received her bachelors degree, First Class, in 1995, master engineering degree from Xi'an JiaoTong University, China in 1999, and Ph.D. degree from Nanyang Technological University (NTU), Singapore in 2005. She worked with the R&D Institute, XIYI Company, Ltd., China as a research engineer from 1995 to 1997. She has been with NTU since 2003 first as a research associate, then as a research fellow, and currently as a core facility manager.



Dr. Ye is an IEEE Member and has co-authored 15 books. She has published more than 100 technical papers in IEEE-Transactions, IEE-Proceedings and other international journals, and various international conferences. Her research interests are power electronics and conversion technologies, signal processing, operations research, and structural biology.