Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advanced Engineering Analysis: The Calculus Of Variations And Functional Analysis With Applications In Mechanics

(National Univ Of Colombia, Colombia), (Lawrence Technological Univ, Usa), (Gdansk Univ Of Technology, Poland)
  • Formāts: 500 pages
  • Izdošanas datums: 27-Mar-2012
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814397544
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 67,62 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 500 pages
  • Izdošanas datums: 27-Mar-2012
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814397544
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Advanced Engineering Analysis is a textbook on modern engineering analysis, covering the calculus of variations, functional analysis, and control theory, as well as applications of these disciplines to mechanics. The book offers a brief and concise, yet complete explanation of essential theory and applications. It contains exercises with hints and solutions, ideal for self-study.
Preface v
1 Basic Calculus of Variations
1(98)
1.1 Introduction
1(14)
1.2 Euler's Equation for the Simplest Problem
15(6)
1.3 Properties of Extremals of the Simplest Functional
21(2)
1.4 Ritz's Method
23(8)
1.5 Natural Boundary Conditions
31(3)
1.6 Extensions to More General Functional
34(9)
1.7 Functional Depending on Functions in Many Variables
43(6)
1.8 A Functional with Integrand Depending on Partial Derivatives of Higher Order
49(5)
1.9 The First Variation
54(11)
1.10 Isoperimetric Problems
65(7)
1.11 General Form of the First Variation
72(4)
1.12 Movable Ends of Extremals
76(4)
1.13 Broken Extremals: Weierstrass-Erdmann Conditions and Related Problems
80(5)
1.14 Sufficient Conditions for Minimum
85(9)
1.15 Exercises
94(5)
2 Applications of the Calculus of Variations in Mechanics
99(60)
2.1 Elementary Problems for Elastic Structures
99(9)
2.2 Some Extremal Principles of Mechanics
108(19)
2.3 Conservation Laws
127(4)
2.4 Conservation Laws and Noether's Theorem
131(8)
2.5 Functionals Depending on Higher Derivatives of y
139(4)
2.6 Noether's Theorem, General Case
143(4)
2.7 Generalizations
147(6)
2.8 Exercises
153(6)
3 Elements of Optimal Control Theory
159(56)
3.1 A Variational Problem as an Optimal Control Problem
159(2)
3.2 General Problem of Optimal Control
161(3)
3.3 Simplest Problem of Optimal Control
164(6)
3.4 Fundamental Solution of a Linear Ordinary Differential Equation
170(1)
3.5 The Simplest Problem, Continued
171(2)
3.6 Pontryagin's Maximum Principle for the Simplest Problem
173(4)
3.7 Some Mathematical Preliminaries
177(12)
3.8 General Terminal Control Problem
189(6)
3.9 Pontryagin's Maximum Principle for the Terminal Optimal Problem
195(3)
3.10 Generalization of the Terminal Control Problem
198(4)
3.11 Small Variations of Control Function for Terminal Control Problem
202(3)
3.12 A Discrete Version of Small Variations of Control Function for Generalized Terminal Control Problem
205(3)
3.13 Optimal Time Control Problems
208(4)
3.14 Final Remarks on Control Problems
212(2)
3.15 Exercises
214(1)
4 Functional Analysis
215(144)
4.1 A Normed Space as a Metric Space
217(6)
4.2 Dimension of a Linear Space and Separability
223(4)
4.3 Cauchy Sequences and Banach Spaces
227(11)
4.4 The Completion Theorem
238(4)
4.5 Lp Spaces and the Lebesgue Integral
242(6)
4.6 Sobolev Spaces
248(2)
4.7 Compactness
250(10)
4.8 Inner Product Spaces, Hilbert Spaces
260(4)
4.9 Operators and Functionals
264(5)
4.10 Contraction Mapping Principle
269(7)
4.11 Some Approximation Theory
276(4)
4.12 Orthogonal Decomposition of a Hilbert Space and the Riesz Representation Theorem
280(4)
4.13 Basis, Gram-Schmidt Procedure, and Fourier Series in Hilbert Space
284(7)
4.14 Weak Convergence
291(7)
4.15 Adjoint and Self-Adjoint Operators
298(6)
4.16 Compact Operators
304(7)
4.17 Closed Operators
311(4)
4.18 On the Sobolev Imbedding Theorem
315(5)
4.19 Some Energy Spaces in Mechanics
320(17)
4.20 Introduction to Spectral Concepts
337(6)
4.21 The Fredholm Theory in Hilbert Spaces
343(9)
4.22 Exercises
352(7)
5 Applications of Functional Analysis in Mechanics
359(74)
5.1 Some Mechanics Problems from the Standpoint of the Calculus of Variations; the Virtual Work Principle
359(5)
5.2 Generalized Solution of the Equilibrium Problem for a Clamped Rod with Springs
364(3)
5.3 Equilibrium Problem for a Clamped Membrane and its Generalized Solution
367(2)
5.4 Equilibrium of a Free Membrane
369(2)
5.5 Some Other Equilibrium Problems of Linear Mechanics
371(8)
5.6 The Ritz and Bubnov-Galerkin Methods
379(2)
5.7 The Hamilton-Ostrogradski Principle and Generalized Setup of Dynamical Problems in Classical Mechanics
381(2)
5.8 Generalized Setup of Dynamic Problem for Membrane
383(14)
5.9 Other Dynamic Problems of Linear Mechanics
397(2)
5.10 The Fourier Method
399(1)
5.11 An Eigenfrequency Boundary Value Problem Arising in Linear Mechanics
400(4)
5.12 The Spectral Theorem
404(6)
5.13 The Fourier Method, Continued
410(5)
5.14 Equilibrium of a von Karman Plate
415(10)
5.15 A Unilateral Problem
425(6)
5.16 Exercises
431(2)
Appendix A Hints for Selected Exercises 433(50)
Bibliography 483(2)
Index 485