Preface |
|
xiii | |
|
Part III Flow and dissipation |
|
|
1 | (244) |
|
12 Waves and instabilities of stationary plasmas |
|
|
3 | (46) |
|
12.1 Laboratory and astrophysical plasmas |
|
|
3 | (10) |
|
12.1.1 Grand vision: magnetized plasma on all scales |
|
|
3 | (3) |
|
12.1.2 Differences between laboratory and astrophysical plasmas |
|
|
6 | (6) |
|
12.1.3 Plasmas with background flow |
|
|
12 | (1) |
|
12.2 Spectral theory of stationary plasmas |
|
|
13 | (22) |
|
|
13 | (3) |
|
12.2.2 Frieman-Rotenberg formulation |
|
|
16 | (6) |
|
12.2.3 Self-adjointness of the generalized force operator |
|
|
22 | (5) |
|
12.2.4 Energy conservation and stability |
|
|
27 | (8) |
|
12.3 Solution paths in the complex w plane |
|
|
35 | (12) |
|
12.3.1 Opening up the boundaries |
|
|
35 | (5) |
|
12.3.2 Approach to eigenvalues |
|
|
40 | (7) |
|
12.4 Literature and exercises |
|
|
47 | (2) |
|
13 Shear flow and rotation |
|
|
49 | (78) |
|
13.1 Spectral theory of plane plasmas with shear flow |
|
|
49 | (22) |
|
13.1.1 Gravito-MHD wave equation for plane plasma flow |
|
|
49 | (6) |
|
13.1.2 Kelvin-Helmholtz instabilities in interface plasmas |
|
|
55 | (4) |
|
13.1.3 Continua and oscillation theorem R for real eigenvalues |
|
|
59 | (6) |
|
13.1.4 Complex eigenvalues and the alternator |
|
|
65 | (6) |
|
13.2 Case study: flow-driven instabilities in diffuse plasmas |
|
|
71 | (22) |
|
13.2.1 Rayleigh-Taylor instabilities of magnetized plasmas |
|
|
73 | (3) |
|
13.2.2 Kelvin-Helmholtz instabilities of ordinary fluids |
|
|
76 | (9) |
|
13.2.3 Gravito-MHD instabilities of stationary plasmas |
|
|
85 | (6) |
|
13.2.4 Oscillation theorem C for complex eigenvalues |
|
|
91 | (2) |
|
13.3 Spectral theory of rotating plasmas |
|
|
93 | (11) |
|
13.3.1 MHD wave equation for cylindrical flow |
|
|
93 | (5) |
|
|
98 | (4) |
|
|
102 | (2) |
|
13.4 Rotational instabilities |
|
|
104 | (19) |
|
13.4.1 Rigid rotation of incompressible plasmas |
|
|
104 | (8) |
|
13.4.2 Magneto-rotational instability: local analysis |
|
|
112 | (6) |
|
13.4.3 Magneto-rotational instability: numerical solutions |
|
|
118 | (5) |
|
13.5 Literature and exercises |
|
|
123 | (4) |
|
14 Resistive plasma dynamics |
|
|
127 | (50) |
|
14.1 Plasmas with dissipation |
|
|
127 | (8) |
|
14.1.1 Conservative versus dissipative dynamical systems |
|
|
127 | (1) |
|
14.1.2 Stability of force-free magnetic fields: a trap |
|
|
128 | (7) |
|
14.2 Resistive instabilities |
|
|
135 | (15) |
|
|
135 | (3) |
|
|
138 | (11) |
|
14.2.3 Resistive interchange modes |
|
|
149 | (1) |
|
|
150 | (12) |
|
14.3.1 Resistive wall mode |
|
|
150 | (5) |
|
14.3.2 Spectrum of homogeneous plasma |
|
|
155 | (3) |
|
14.3.3 Spectrum of inhomogeneous plasma |
|
|
158 | (4) |
|
|
162 | (13) |
|
14.4.1 Reconnection in 2D Harris sheet |
|
|
162 | (6) |
|
14.4.2 Petschek reconnection |
|
|
168 | (1) |
|
14.4.3 Kelvin-Helmholtz induced tearing instabilities |
|
|
169 | (2) |
|
14.4.4 Extended MHD and reconnection |
|
|
171 | (4) |
|
14.5 Literature and exercises |
|
|
175 | (2) |
|
15 Computational linear MHD |
|
|
177 | (68) |
|
15.1 Spatial discretization techniques |
|
|
178 | (26) |
|
15.1.1 Basic concepts for discrete representations |
|
|
180 | (2) |
|
15.1.2 Finite difference methods |
|
|
182 | (4) |
|
15.1.3 Finite element method |
|
|
186 | (10) |
|
|
196 | (5) |
|
15.1.5 Mixed representations |
|
|
201 | (3) |
|
15.2 Linear MHD: boundary value problems |
|
|
204 | (13) |
|
15.2.1 Linearized MHD equations |
|
|
204 | (2) |
|
15.2.2 Steady solutions to linearly driven problems |
|
|
206 | (3) |
|
15.2.3 MHD eigenvalue problems |
|
|
209 | (2) |
|
15.2.4 Extended MHD examples |
|
|
211 | (6) |
|
15.3 Linear algebraic methods |
|
|
217 | (8) |
|
15.3.1 Direct and iterative linear system solvers |
|
|
217 | (3) |
|
15.3.2 Eigenvalue solvers: the QR algorithm |
|
|
220 | (1) |
|
15.3.3 Inverse iteration for eigenvalues and eigenvectors |
|
|
221 | (1) |
|
15.3.4 Jacobi-Davidson method |
|
|
222 | (3) |
|
15.4 Linear MHD: initial value problems |
|
|
225 | (15) |
|
15.4.1 Temporal discretizations: explicit methods |
|
|
225 | (8) |
|
15.4.2 Disparateness of MHD time scales |
|
|
233 | (1) |
|
15.4.3 Temporal discretizations: implicit methods |
|
|
234 | (2) |
|
15.4.4 Applications: linear MHD evolutions |
|
|
236 | (4) |
|
|
240 | (1) |
|
15.6 Literature and exercises |
|
|
241 | (4) |
|
|
245 | (160) |
|
16 Static equilibrium of toroidal plasmas |
|
|
247 | (60) |
|
16.1 Axi-symmetric equilibrium |
|
|
247 | (22) |
|
16.1.1 Equilibrium in tokamaks |
|
|
247 | (5) |
|
16.1.2 Magnetic field geometry |
|
|
252 | (4) |
|
16.1.3 Cylindrical limits |
|
|
256 | (4) |
|
16.1.4 Global confinement and parameters |
|
|
260 | (9) |
|
16.2 Grad-Shafranov equation |
|
|
269 | (15) |
|
16.2.1 Derivation of the Grad-Shafranov equation |
|
|
269 | (2) |
|
16.2.2 Large aspect ratio expansion: internal solution |
|
|
271 | (6) |
|
16.2.3 Large aspect ratio expansion: external solution |
|
|
277 | (7) |
|
16.3 Exact equilibrium solutions |
|
|
284 | (15) |
|
16.3.1 Poloidal flux scaling |
|
|
284 | (5) |
|
16.3.2 Soloviev equilibrium |
|
|
289 | (4) |
|
16.3.3 Numerical equilibria |
|
|
293 | (6) |
|
|
299 | (5) |
|
|
299 | (2) |
|
16.4.2 Gravitating plasma equilibria |
|
|
301 | (1) |
|
|
302 | (2) |
|
16.5 Literature and exercises |
|
|
304 | (3) |
|
17 Linear dynamics of static toroidal plasmas |
|
|
307 | (48) |
|
17.1 "Ad more geometrico" |
|
|
307 | (8) |
|
17.1.1 Alfven wave dynamics in toroidal geometry |
|
|
307 | (1) |
|
17.1.2 Coordinates and mapping |
|
|
308 | (1) |
|
17.1.3 Geometrical-physical characteristics |
|
|
309 | (6) |
|
17.2 Analysis of waves and instabilities in toroidal geometry |
|
|
315 | (19) |
|
17.2.1 Spectral wave equation |
|
|
315 | (3) |
|
17.2.2 Spectral variational principle |
|
|
318 | (1) |
|
17.2.3 Alfven and slow continuum modes |
|
|
319 | (3) |
|
17.2.4 Poloidal mode coupling |
|
|
322 | (4) |
|
17.2.5 Alfven and slow ballooning modes |
|
|
326 | (8) |
|
17.3 Computation of waves and instabilities in tokamaks |
|
|
334 | (18) |
|
17.3.1 Ideal MHD versus resistive MHD in computations |
|
|
334 | (6) |
|
17.3.2 Edge localized modes |
|
|
340 | (4) |
|
|
344 | (3) |
|
17.3.4 Toroidal Alfven eigenmodes and MHD spectroscopy |
|
|
347 | (5) |
|
17.4 Literature and exercises |
|
|
352 | (3) |
|
18 Linear dynamics of stationary toroidal plasmas |
|
|
355 | (50) |
|
18.1 Transonic toroidal plasmas |
|
|
355 | (2) |
|
18.2 Axi-symmetric equilibrium of transonic stationary states |
|
|
357 | (17) |
|
18.2.1 General equations and toroidal rescalings |
|
|
357 | (8) |
|
18.2.2 Elliptic and hyperbolic flow regimes |
|
|
365 | (1) |
|
18.2.3 Expansion of the equilibrium in small toroidicity |
|
|
366 | (8) |
|
18.3 Equations for the continuous spectrum |
|
|
374 | (18) |
|
18.3.1 Reduction for straight-field-line coordinates |
|
|
374 | (4) |
|
18.3.2 Continua of poloidally and toroidally rotating plasmas |
|
|
378 | (7) |
|
18.3.3 Analysis of trans-slow continua for small toroidicity |
|
|
385 | (7) |
|
18.4 Trans-slow continua in tokamaks and accretion disks |
|
|
392 | (10) |
|
18.4.1 Tokamaks and magnetically dominated accretion disks |
|
|
393 | (3) |
|
18.4.2 Gravity dominated accretion disks |
|
|
396 | (1) |
|
18.4.3 A new class of transonic instabilities |
|
|
397 | (5) |
|
18.5 Literature and exercises |
|
|
402 | (3) |
|
Part V Nonlinear dynamics |
|
|
405 | (186) |
|
19 Computational nonlinear MHD |
|
|
407 | (80) |
|
19.1 General considerations for nonlinear conservation laws |
|
|
408 | (25) |
|
19.1.1 Conservative versus primitive variable formulations |
|
|
408 | (7) |
|
19.1.2 Scalar conservation law and the Riemann problem |
|
|
415 | (5) |
|
19.1.3 Numerical discretizations for a scalar conservation law |
|
|
420 | (10) |
|
19.1.4 Finite volume treatments |
|
|
430 | (3) |
|
19.2 Upwind-like finite volume treatments for 1D MHD |
|
|
433 | (21) |
|
19.2.1 The Godunov method |
|
|
434 | (6) |
|
19.2.2 A robust shock-capturing method: TVDLF |
|
|
440 | (6) |
|
19.2.3 Approximate Riemann solver type schemes |
|
|
446 | (5) |
|
19.2.4 Simulating 1D MHD Riemann problems |
|
|
451 | (3) |
|
19.3 Multi-dimensional MHD computations |
|
|
454 | (19) |
|
19.3.1 Δ · B = 0 condition for shock-capturing schemes |
|
|
455 | (6) |
|
19.3.2 Example nonlinear MHD scenarios |
|
|
461 | (5) |
|
19.3.3 Alternative numerical methods |
|
|
466 | (7) |
|
19.4 Implicit approaches for extended MHD simulations |
|
|
473 | (11) |
|
19.4.1 Alternating direction implicit strategies |
|
|
474 | (1) |
|
19.4.2 Semi-implicit methods |
|
|
475 | (6) |
|
19.4.3 Simulating ideal and resistive instability developments |
|
|
481 | (1) |
|
19.4.4 Global simulations for tokamak plasmas |
|
|
482 | (2) |
|
19.5 Literature and exercises |
|
|
484 | (3) |
|
20 Transonic MHD flows and shocks |
|
|
487 | (56) |
|
|
487 | (3) |
|
20.1.1 Flow in laboratory and astrophysical plasmas |
|
|
487 | (1) |
|
20.1.2 Characteristics in space and time |
|
|
488 | (2) |
|
|
490 | (17) |
|
20.2.1 Special case: gas dynamic shocks |
|
|
492 | (6) |
|
20.2.2 MHD discontinuities without mass flow |
|
|
498 | (2) |
|
20.2.3 MHD discontinuities with mass flow |
|
|
500 | (5) |
|
20.2.4 Slow, intermediate and fast shocks |
|
|
505 | (2) |
|
20.3 Classification of MHD shocks |
|
|
507 | (22) |
|
20.3.1 Distilled shock conditions |
|
|
507 | (6) |
|
20.3.2 Time reversal duality |
|
|
513 | (7) |
|
20.3.3 Angular dependence of MHD shocks |
|
|
520 | (7) |
|
20.3.4 Observational considerations of MHD shocks |
|
|
527 | (2) |
|
20.4 Stationary transonic flows |
|
|
529 | (11) |
|
20.4.1 Modeling the solar wind-magnetosphere boundary |
|
|
530 | (1) |
|
20.4.2 Modeling the solar wind by itself |
|
|
531 | (3) |
|
20.4.3 Example astrophysical transonic flows |
|
|
534 | (6) |
|
20.5 Literature and exercises |
|
|
540 | (3) |
|
21 Ideal MHD in special relativity |
|
|
543 | (48) |
|
21.1 Four-dimensional space-time: special relativistic concepts |
|
|
544 | (20) |
|
21.1.1 Space-time coordinates and Lorentz transformations |
|
|
544 | (3) |
|
21.1.2 Four-vectors in flat space-time and invariants |
|
|
547 | (4) |
|
21.1.3 Relativistic gas dynamics and stress-energy tensor |
|
|
551 | (5) |
|
21.1.4 Sound waves and shock relations in relativistic gases |
|
|
556 | (8) |
|
21.2 Electromagnetism and special relativistic MHD |
|
|
564 | (16) |
|
21.2.1 Electromagnetic field tensor and Maxwell's equations |
|
|
564 | (5) |
|
21.2.2 Stress-energy tensor for electromagnetic fields |
|
|
569 | (1) |
|
21.2.3 Ideal MHD in special relativity |
|
|
570 | (2) |
|
21.2.4 Wave dynamics in a homogeneous plasma |
|
|
572 | (5) |
|
21.2.5 Shock conditions in relativistic MHD |
|
|
577 | (3) |
|
21.3 Computing relativistic magnetized plasma dynamics |
|
|
580 | (8) |
|
21.3.1 Numerical challenges from relativistic MHD |
|
|
583 | (1) |
|
21.3.2 Example astrophysical applications |
|
|
584 | (4) |
|
21.4 Literature and exercises |
|
|
588 | (3) |
|
|
591 | (13) |
|
A Vectors and coordinates |
|
|
591 | (13) |
|
|
591 | (1) |
|
A.2 Vector expressions in orthogonal coordinates |
|
|
592 | (8) |
|
A.3 Vector expressions in non-orthogonal coordinates |
|
|
600 | (4) |
References |
|
604 | (25) |
Index |
|
629 | |