Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advanced Rehabilitative Technology: Neural Interfaces and Devices

(Professor, School of Information Engineering, Wuhan University of Technology), , (Lecturer, School of Information Engineering, Wuhan Universi), (Professor in School of Information Engineering, Wuhan University of Technology, Wuhan, China)
  • Formāts: PDF+DRM
  • Izdošanas datums: 17-Aug-2018
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128145982
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 203,82 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 17-Aug-2018
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128145982
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Advanced Rehabilitative Technology: Neural Interfaces and Devices teaches readers how to acquire and process bio-signals using biosensors and acquisition devices, how to identify the human movement intention and decode the brain signal, how to design physiological and musculoskeletal models and establish the neural interfaces, and how to develop neural devices and control them efficiently using biological signals. The book takes a multidisciplinary theme between the engineering and medical field, including sections on neuromuscular/brain signal processing, human motion and intention recognition, biomechanics modelling and interfaces, and neural devices and control for rehabilitation.

Each chapter goes through a detailed description of the bio-mechatronic systems used and then presents implementation and testing tactics. In addition, it details new neural interfaces and devices, some of which have never been published before in any journals or conferences. With this book, readers will quickly get up-to-speed on the most recent and future advancements in bio-mechatronics engineering for applications in rehabilitation.

  • Presents insights into emerging technologies and developments that are currently used or on the horizon in biological systems and mechatronics for rehabilitative purposes
  • Gives a comprehensive background of biological interfaces and details of new advances in the field
  • Addresses the challenges of rehabilitative applications in areas of bio-signal processing, bio-modelling, neural and muscular interface, and neural devices.
  • Provides substantial background materials and relevant case studies for each subject
Author Biography vii
Preface ix
1 Introduction
1(10)
1.1 Background
1(1)
1.2 Human Biological Systems
2(2)
1.3 Neural Interfaces and Devices
4(2)
1.4 Critical Issues
6(1)
1.5
Chapter Summary
6(2)
References
8(2)
Further Reading
10(1)
2 State-of-the-Art
11(22)
2.1 Neuromuscular Signal
11(8)
2.2 Brain Signal
19(6)
2.3 Neural Modeling and Interfaces
25(3)
2.4
Chapter Summary
28(1)
References
28(5)
3 Neuromuscular Signal Acquisition and Processing
33(34)
3.1 sEMG Signal
33(2)
3.2 sEMG Acquisition Devices
35(20)
3.3 sEMG Signal Preprocessing
55(10)
3.4
Chapter Summary
65(1)
References
66(1)
4 sEMG-Based Motion Recognition
67(38)
4.1 sEMG Feature Extraction and Classification
67(5)
4.2 Hand Gesture Recognition
72(9)
4.3 Ankle Motion Recognition
81(5)
4.4 Continuous Motion Recognition of Wrist Joint
86(15)
4.5
Chapter Summary
101(1)
References
102(2)
Further Reading
104(1)
5 Brain Signal Acquisition and Preprocessing
105(30)
5.1 Research Background and Significance
105(1)
5.2 SSVEP/P300/Motor Imagery Signal
106(7)
5.3 Stimulators and Acquisition Devices
113(4)
5.4 Signal Preprocessing
117(14)
5.5
Chapter Summary
131(1)
References
132(3)
6 EEG-Based Brain Intention Recognition
135(32)
6.1 EEG Feature Extraction and Classification
135(2)
6.2 SSVEP-Based Intent Recognition
137(11)
6.3 P300-Based Intention Recognition
148(6)
6.4 Motor Imagery-Based Intention Recognition
154(10)
6.5
Chapter Summary
164(1)
References
164(3)
7 Neuromuscular Modeling
167(40)
7.1 Biological Organisms
167(7)
7.2 sEMG-Driven Musculoskeletal Model
174(10)
7.3 Muscle Force Estimation
184(12)
7.4 Neuromuscular Models in Robotic Rehabilitation
196(8)
7.5
Chapter Summary
204(1)
References
204(1)
Further Reading
205(2)
8 Neural Interface
207(38)
8.1 Neuromuscular Interface
207(12)
8.2 Brain-Computer Interface
219(11)
8.3 Interactive Control Interface
230(12)
8.4
Chapter Summary
242(1)
References
242(1)
Further Reading
243(2)
9 Conclusion and Future Prospects
245(10)
9.1 Book Contributions
245(5)
9.2 Outlook and Future Prospects
250(3)
References
253(2)
Nomenclatures 255(4)
Index 259
Qingsong Ai is currently a Professor at Wuhan University of Technology and a Senior Editor of Cogent Engineering. He is an author of more than 50 technical publications, proceedings, and editorials. In recent years, he has directed more than 10 research projects. His research interests include signal processing, rehabilitation robots, and advanced manufacturing technology. Quan Liu is currently chair professor at the School of Information Engineering at Wuhan University of Technology. In the past five years, she authored more than 100 technical publications, proceedings, editorials, and books. She has directed more than 20 research projects. Her research interests include signal processing, embedded systems, and robots and electronics. Prof. Liu received two national awards and three provincial and ministerial awards. She was awarded as the National Excellent Teacher” in 2007. She is a Council Member of the Chinese Association of Electromagnetic Compatibility and the Hubei Institute of Electronics. Wei Meng is currently a lecturer at the School of Information Engineering, Wuhan University of Technology. His research interests include robot-assisted rehabilitation, humanrobot interaction, and iterative learning control. He has co-authored five books, published more than 80 academic journal and conference papers, and holds 22 patents. Sheng Quan Xie is currently chair professor in robotics and autonomous systems at the Faculty of Engineering, University of Leeds. He has published seven books, 15 book chapters, and more than 300 international journal and conference papers. His current research interests include medical and rehabilitation robots and advanced robot control. Professor Xie was elected a Fellow of The Institution of Professional Engineers New Zealand in 2016. He has also served as a Technical Editor of the IEEE/ASME TRANSACTIONS ON MECHATRONICS.