Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advanced Sparsity-Driven Models and Methods for Radar Applications

(Tsinghua University, Department of Electronic Engineering, China)
  • Formāts: EPUB+DRM
  • Sērija : Radar, Sonar and Navigation
  • Izdošanas datums: 22-Dec-2020
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781839530760
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 187,84 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Radar, Sonar and Navigation
  • Izdošanas datums: 22-Dec-2020
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781839530760
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book introduces advanced sparsity-driven models and methods and their applications in radar tasks such as detection, imaging and classification. It is based on research from the last decade, with a particular focus on applying compressed-sensing-based models and algorithms to solve practical problems in radar.



This book introduces advanced sparsity-driven models and methods and their applications in radar tasks such as detection, imaging and classification. Compressed sensing (CS) is one of the most active topics in the signal processing area. By exploiting and promoting the sparsity of the signals of interest, CS offers a new framework for reducing data without compromising the performance of signal recovery, or for enhancing resolution without increasing measurements.

An introductory chapter outlines the fundamentals of sparse signal recovery. The following topics are then systematically and comprehensively addressed: hybrid greedy pursuit algorithms for enhancing radar imaging quality; two-level block sparsity model for multi-channel radar signals; parametric sparse representation for radar imaging with model uncertainty; Poisson-disk sampling for high-resolution and wide-swath SAR imaging; when advanced sparse models meet coarsely quantized radar data; sparsity-aware micro-Doppler analysis for radar target classification; and distributed detection of sparse signals in radar networks via locally most powerful test. Finally, a concluding chapter summarises key points from the preceding chapters and offers concise perspectives.

The book focuses on how to apply the CS-based models and algorithms to solve practical problems in radar, for the radar and signal processing research communities.

  • Chapter 1: Introduction
  • Chapter 2: Hybrid greedy pursuit algorithms for enhancing radar imaging quality
  • Chapter 3: Two-level block sparsity model for multichannel radar signals
  • Chapter 4: Parametric sparse representation for radar imaging with model uncertainty
  • Chapter 5: Poisson disk sampling for high-resolution and wide-swath SAR imaging
  • Chapter 6: When advanced sparse signal models meet coarsely quantized radar data
  • Chapter 7: Sparsity aware micro-Doppler analysis for radar target classification
  • Chapter 8: Distributed detection of sparse signals in radar networks via locally most powerful test
  • Chapter 9: Summary and perspectives
Gang Li is a Professor at the Department of Electronic Engineering, Tsinghua University, China. His research interests include radar signal processing, remote sensing, distributed signal processing, and information fusion. He has published over 150 papers on these subjects. He is a recipient of the National Science Fund for Distinguished Young Scholars of China and the Royal Society Newton Advanced Fellowship of United Kingdom. He is a Senior Member of the IEEE.