Atjaunināt sīkdatņu piekrišanu

Advanced Turbulent Combustion Physics and Applications [Hardback]

Edited by (Lunds Universitet, Sweden), Edited by (University of Cambridge), Edited by (KTH Royal Institute of Technology, Stockholm), Edited by (Lunds Universitet, Sweden), Edited by
  • Formāts: Hardback, 482 pages, height x width x depth: 250x174x25 mm, weight: 1060 g, Worked examples or Exercises
  • Izdošanas datums: 06-Jan-2022
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1108497969
  • ISBN-13: 9781108497961
  • Hardback
  • Cena: 150,95 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 482 pages, height x width x depth: 250x174x25 mm, weight: 1060 g, Worked examples or Exercises
  • Izdošanas datums: 06-Jan-2022
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1108497969
  • ISBN-13: 9781108497961
"Explore a thorough and up to date overview of the current knowledge, developments and outstanding challenges in turbulent combustion and application. The balance among various renewable and combustion technologies are surveyed, and numerical and experimental tools are discussed along with recent advances. Covers combustion of gaseous, liquid and solid fuels and subsonic and supersonic flows. This detailed insight into the turbulence-combustion coupling with turbulence and other physical aspects, shared by a number of the world leading experts in the field, makes this an excellent reference for graduate students, researchers and practitioners in the field"--

Recenzijas

'This is a fine contribution to the literature on turbulent combustion and its various applications and should be made available to graduate students and researchers working in the area of combustion Highly recommended.' A. M. Strauss, Choice

Papildus informācija

Explore a thorough overview of the current knowledge, developments and outstanding challenges in turbulent combustion and application.
List of Contributors
xi
Preface xiii
1 Introduction
1(24)
N. Swaminathan
X.-S. Bai
G. Brethouwer
N. E. L. Haugen
1.1 Role of Combustion Technology
6(2)
1.2 Setting the Stage
8(2)
1.3 Governing Equations
10(1)
1.4 Aerothermodynamic and Constitutive Relations
11(2)
1.5 Chemical Kinetic Relations
13(1)
1.6 Direct Numerical Simulation
14(1)
1.7 Large-Eddy Simulation
15(4)
1.7.1 LES Equations
15(2)
1.7.2 SGS Closures
17(1)
1.7.3 Challenges for LES
18(1)
1.8 RANS Approach
19(2)
1.9 Aims and Objectives
21(1)
References
22(3)
2 Turbulent Flame Structure and Dynamics: Combustion Regimes
25(75)
V. Sabelnikov
A. Lipatnikov
X.-S. Bai
N. Swaminathan
2.1 Historical and Physical Perspective of Turbulent Combustion
26(18)
V. Sabelnikov
A. Lipatnikov
X.-S. Bai
N. Swaminathan
2.1.1 Regime Classification for Non-premixed Flames
26(2)
2.1.2 Regime Classification of Turbulent Premixed Flames
28(4)
2.1.3 Shetinkov's Microvolume Regime of Turbulent Premixed Combustion
32(8)
2.1.4 Propagation of Thin Reaction Zone in Intense Turbulence
40(4)
2.2 Direct Numerical Simulation Perspective
44(10)
H. Im
J. H. Chen
A. Aspden
2.2.1 DNS of Canonical Configurations
45(6)
2.2.2 DNS of Complex Flames
51(3)
2.3 Experimental Perspective and Challenges
54(30)
B. Zhou
J. H. Frank
B. Coriton
Z. Li
M. Alden
X.-S. Bai
2.3.1 Simultaneous Multiscalar Visualization of Turbulent Premixed Flames
55(10)
2.3.2 Advances in Dimensionalities High-Speed Diagnostics
65(18)
2.3.3 Concluding Remarks
83(1)
References
84(16)
3 Premixed Combustion Modeling
100(62)
C. Dopazo
N. Swaminathan
L. Cifuentes
X.-S. Bai
3.1 Introduction
100(3)
3.2 Phenomenological Models
103(3)
3.2.1 Eddy Breakup Model
103(1)
3.2.2 Thickened Flame Model
104(1)
3.2.3 Linear Eddy Model
105(1)
3.3 Geometrical Models
106(9)
3.3.1 FSD Approach
106(5)
3.3.2 G-Equation Model
111(4)
3.4 Statistical Models
115(11)
3.4.1 Transported PDF
115(3)
3.4.2 Bray-Moss-Libby Model
118(3)
3.4.3 Conditional Moment Closure Approach
121(4)
3.4.4 Tabulated Chemistry Approach
125(1)
3.5 Improvements for the Flamelets: FlaRe Approach
126(7)
3.6 Turbulent Mixing in Premixed Combustion Revisited: Some Fundamental Considerations
133(13)
3.6.1 Characteristic Mixing Times
133(5)
3.6.2 Length Scales: Spectral Analysis of a Dynamically Passive Scalar Field Undergoing a Linear Chemical Reaction
138(6)
3.6.3 Further Relationships Relevant to Modeling
144(1)
3.6.4 Remarks on the G-Equation
145(1)
3.7 Summary
146(4)
References
150(12)
4 Non-premixed and Partially Premixed Combustion Modeling
162(38)
C. Fureby
X.-S. Bai
4.1 Introduction and Background
162(1)
4.2 Regime Diagrams for Turbulent Non-premixed and Partially Premixed Combustion
163(3)
4.3 Theoretical Models of Non-premixed and Partially Premixed Combustion
166(5)
4.3.1 Premixed Combustion
166(1)
4.3.2 Non-premixed Combustion
167(2)
4.3.3 Partially Premixed and Stratified Combustion
169(2)
4.4 Modeling of Non-premixed and Partially Premixed Combustion
171(10)
4.4.1 Flamelet Models
171(2)
4.4.2 Thickened Flame Model
173(1)
4.4.3 Localized Time Scales Combustion Models
174(2)
4.4.4 Transported PDF LES Combustion Models Based on Eulerian Stochastic Fields Models
176(1)
4.4.5 Conditional Moment Combustion Model
177(2)
4.4.6 Linear Eddy Combustion Model
179(2)
4.5 Discussion
181(1)
4.6 Case Studies
182(10)
4.6.1 The KAUST Diffusion Flame Burner
182(3)
4.6.2 Stratified Flames: The Lund Low-Swirl Burner
185(2)
4.6.3 Non-Premixed and Partially Premixed Flames: The Turchemi Model Combustor
187(3)
4.6.4 Non-Premixed And Partially Premixed Flames: Prediction of Thermoacoustically Unstable Flames
190(2)
4.7 Concluding Remarks
192(1)
References
193(7)
5 Chemical Kinetics
200(40)
E. J. K. Nilsson
C. Fureby
A. Aspden
5.1 Introduction
200(2)
5.2 Combustion Chemistry
202(10)
5.2.1 Chemical Kinetics
203(4)
5.2.2 Global Combustion Characteristics
207(5)
5.3 Chemical Kinetic Mechanisms
212(6)
5.3.1 Complete or Detailed Mechanisms
213(1)
5.3.2 Skeletal Mechanisms
214(1)
5.3.3 Reduced Mechanisms
215(2)
5.3.4 Global Mechanisms
217(1)
5.3.5 Mathematical Stiffness
218(1)
5.4 Mechanisms for Natural Gas, Heavy Liquid Fuels, and Ethanol
218(4)
5.4.1 Natural Gas and/or Methane
218(2)
5.4.2 Heavy Liquid Fuels
220(1)
5.4.3 Alcohols
220(2)
5.5 Incorporating Chemistry in Combustion Modeling
222(10)
5.5.1 Turbulence-Chemistry Interactions in LES
222(1)
5.5.2 The Turchemi Combustor: Methane
222(2)
5.5.3 The Volvo Bluff Body Combustor: Propane
224(5)
5.5.4 A Supersonic Cavity Stabilized Combustor: Ethylene (and Hydrogen)
229(3)
5.6 Future Directions
232(1)
References
233(7)
6 MILD Combustion
240(41)
Y. Minamoto
N. A. K. Doan
N. Swaminathan
6.1 Introduction
240(4)
6.2 Definitions of MILD Combustion
244(3)
6.3 Investigations Using Zero- and One-Dimensional Model Reactors
247(4)
6.3.1 Well-Stirred Reactor
247(1)
6.3.2 Counterflow Flame
248(2)
6.3.3 Plug Flow Reactor
250(1)
6.3.4 Insights from Laminar Calculations
251(1)
6.4 Past Experimental Explorations
251(6)
6.4.1 Typical Configurations to Achieve MILD Combustion
251(3)
6.4.2 Structure and Identification of Reaction Zones
254(3)
6.5 DNS of MILD Combustion
257(9)
6.5.1 Reaction Zone Shape and Structure
257(6)
6.5.2 Are There Flames?
263(2)
6.5.3 Comments on Markers
265(1)
6.6 Modeling of MILD Combustion
266(5)
6.6.1 RANS Calculations
267(3)
6.6.2 LES
270(1)
6.7 Potential Applications and Future Outlook
271(2)
References
273(8)
7 Supersonic Combustion
281(47)
A. Mura
V. Sabelnikov
7.1 Introduction and Background
281(3)
7.2 Supersonic Reactive Flows: Governing Equations
284(6)
7.3 Steady Premixed Combustion Waves in High-Speed Flows
290(8)
7.3.1 Situations with Released Energy Below the Critical Value
291(6)
7.3.2 Situations with Released Energy Above the Critical Value
297(1)
7.3.3 Fast Compressible Flames and Their Transition to Detonation
297(1)
7.4 Influence of Wall Friction and Heat Transfer
298(3)
7.5 Thermal Choking in Constant Cross Section Area Channel
301(2)
7.6 Stability Analysis in the Vicinity of Thermal Choking Conditions
303(4)
7.6.1 Constant Cross Section with Wall Friction and Heat Exchange
303(3)
7.6.2 Variable Cross Section: Divergent Channel
306(1)
7.7 Turbulent Mixing in Compressible Flows
307(7)
7.8 Turbulent Combustion in High-Speed Flows
314(5)
7.9 Current Challenges and Future Research Needs
319(1)
References
320(8)
8 Liquid Fuel Combustion
328(39)
Z. Bouali
A. Mura
J. Reveillon
8.1 Two-Phase Flow Topology and Spray Statistics
330(6)
8.2 Mathematical Framework and Description of Two-Phase Flows
336(4)
8.3 Modeling Issues Relevant to Evaporation and Combustion
340(11)
8.3.1 Description of the Gaseous Phase
340(1)
8.3.2 Description of the Liquid Phase
341(1)
8.3.3 Boundary Conditions
341(8)
8.3.4 Eulerian/Lagrangian Couplings
349(2)
8.4 Two-Phase Flow Turbulent Combustion Regimes and Diagrams
351(12)
8.4.1 Genesis of Two-Phase Flow Combustion Diagrams
351(1)
8.4.2 Spray Flame Structures
352(2)
8.4.3 Combustion Diagrams
354(9)
8.5 Conclusion
363(1)
References
363(4)
9 Solid Fuel Combustion
367(29)
N. E. L. Haugen
K. Umeki
M. Liberman
I. Rogachevskii
F. Picano
9.1 Introduction
367(3)
9.1.1 Governing Equations
367(1)
9.1.2 Thermal Conversion Reactions
368(2)
9.2 The Effect of Turbulence on the Heterogeneous Conversion of Powders
370(4)
9.2.1 Velocity-Induced Mass Transfer Increase
371(1)
9.2.2 Cluster-Induced Mass Transfer Decrease
372(2)
9.3 Radiation-Induced Mechanism of Unconfined Dust Explosions
374(6)
9.3.1 Effect of Turbulent Clustering of Dust Particles on Radiative Heat Transfer
375(3)
9.3.2 Radiation-Induced Secondary Explosions
378(2)
9.4 Intraparticle Transport Phenomena in Solid Fuel Combustion
380(6)
9.4.1 Time-scale Analyses
380(2)
9.4.2 Resolved Particle Models
382(1)
9.4.3 Effect of Thermal Conduction on the Devolatilization of Biomass
383(2)
9.4.4 Simplified Models and Application in Burner Simulation
385(1)
9.5 Turbulent Transport of a Dispersed Phase with Implications for Combustion
386(5)
9.5.1 Dispersed Solid Phase in Turbulent Flows: Coupling Mechanisms
386(2)
9.5.2 Preferential Transport of Solid Dispersed Phases
388(3)
9.6 Final Remarks and Perspectives
391(1)
References
391(5)
10 Challenges in Practical Combustion
396(64)
10.1 Stationary Gas Turbine Combustion Challenges
396(11)
D. Lorstad
10.1.1 Combustor Design Process
399(3)
10.1.2 Future Simulation Efficiency
402(3)
10.1.3 Challenges for Stationary Gas Turbines
405(1)
10.1.4 Challenges for Combustion Prediction
406(1)
10.2 Aero-engine Combustor Design Methods: Approach and Challenges
407(29)
M. Zedda
10.2.1 The Role of Low-Order Methods in Combustor Design
410(1)
10.2.2 The Role of High-Order Methods in Combustor Design
411(1)
10.2.3 CFD for System Aerodynamics
411(2)
10.2.4 CFD for Fuel Injector Design
413(2)
10.2.5 CFD for Temperature Traverse
415(4)
10.2.6 CFD for Emissions Ranking
419(4)
10.2.7 CFD and Finite-Element Analyses of Metal Temperature
423(3)
10.2.8 Low- and High-Order Methods for Thermoacoustics
426(4)
10.2.9 Relight and Extinction Methods
430(1)
10.2.10 Fuel Coking Methods
431(2)
10.2.11 The Role of Spray Modeling
433(2)
10.2.12 Trends in Aero-engine Combustor CFD
435(1)
10.3 Internal Combustion Engines
436(17)
D. Norling
X.-S. Bai
10.3.1 Combustion Concepts in ICE
437(2)
10.3.2 Diesel Engine Combustion Chamber Design
439(2)
10.3.3 The Combustion Process
441(3)
10.3.4 Gas Motion and Turbulence in the Combustion Chamber
444(5)
10.3.5 Challenges in Diesel Combustion Measurements
449(2)
10.3.6 Concluding Remarks
451(2)
References
453(7)
11 Closing Remarks
460(4)
X.-S. Bai
N. E. L. Haugen
C. Fureby
G. Brethouwer
N. Swaminathan
Index 464
Nedunchezhian Swaminathan is Professor of Mechanical Engineering at Cambridge University, UK, and Director of Studies and Fellow at Robinson College, Cambridge, UK. He is a Fellow of Combustion Institute since 2018, member of EPSRC College, holds visiting Professorships in many overseas Universities and consults to a number of industries in Transport and Energy sectors. Xue-Song Bai is Professor of Fluid Mechanics at Lund University, Sweden. He is a Fellow of Combustion Institute since 2018. Nils Erland Leinebų Haugen is a Senior Research Scientist at SINTEF Energy Research, Trondheim Norway. Christer Fureby is Professor of Heat Transfer at Lund University, Sweden. He is an associate fellow of the American Institute of Aeronautics and Astronautics, and a member of the Combustion Institute. Geert Brethouwer is a Senior Researcher at FLOW, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden.