Atjaunināt sīkdatņu piekrišanu

Advancements in Knowledge Distillation: Towards New Horizons of Intelligent Systems 2023 ed. [Hardback]

Edited by , Edited by
  • Formāts: Hardback, 232 pages, height x width: 235x155 mm, weight: 535 g, 51 Illustrations, color; 19 Illustrations, black and white; VIII, 232 p. 70 illus., 51 illus. in color., 1 Hardback
  • Sērija : Studies in Computational Intelligence 1100
  • Izdošanas datums: 14-Jun-2023
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031320948
  • ISBN-13: 9783031320941
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 180,78 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 212,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 232 pages, height x width: 235x155 mm, weight: 535 g, 51 Illustrations, color; 19 Illustrations, black and white; VIII, 232 p. 70 illus., 51 illus. in color., 1 Hardback
  • Sērija : Studies in Computational Intelligence 1100
  • Izdošanas datums: 14-Jun-2023
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031320948
  • ISBN-13: 9783031320941
Citas grāmatas par šo tēmu:

The book provides a timely coverage of the paradigm of knowledge distillation—an efficient way of model compression. Knowledge distillation is positioned in a general setting of transfer learning, which effectively learns a lightweight student model from a large teacher model. The book covers a variety of training schemes, teacher–student architectures, and distillation algorithms. The book covers a wealth of topics including recent developments in vision and language learning, relational architectures, multi-task learning, and representative applications to image processing, computer vision, edge intelligence, and autonomous systems. The book is of relevance to a broad audience including researchers and practitioners active in the area of machine learning and pursuing fundamental and applied research in the area of advanced learning paradigms.

Categories of Response-Based, Feature-Based, and Relation-Based Knowledge Distillation.- A Geometric Perspective on Feature-Based Distillation.- Knowledge Distillation Across Vision and Language.- Knowledge Distillation in Granular Fuzzy Models by Solving Fuzzy Relation Equations.- Ensemble Knowledge Distillation for Edge Intelligence in Medical Applications.- Self-Distillation with the New Paradigm in Multi-Task Learning.- Knowledge Distillation for Autonomous Intelligent Unmanned System.