Atjaunināt sīkdatņu piekrišanu

Advances Of Accelerator Physics And Technologies [Mīkstie vāki]

Edited by (Univ Of Hamburg, Germany & Cern, Switzerland)
  • Mīkstie vāki
  • Cena: 88,53 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
This volume, consisting of articles written by experts with international repute and long experience, reviews the state of the art of accelerator physics and technologies and the use of accelerators in research, industry and medicine. It covers a wide range of topics, from basic problems concerning the performance of circular and linear accelerators to technical issues and related fields. Also discussed are recent achievements that are of particular interest (such as RF quadrupole acceleration, ion sources and storage rings) and new technologies (such as superconductivity for magnets and RF cavities).The book will interest not only researchers and engineers in the field of accelerator development but also users of accelerators in research and industry. Moreover, teachers giving courses on accelerators and their applications will profit by learning about the most recent achievements and future possibilities.

Recenzijas

"... essential reading for the accelerator specialist ... Bravo to the editor, Herwig Schopper, for making a success out of a timely compilation." E J N Wilson CERN Courier, 1994

Preface xxi
I INTRODUCTION
What Can We Learn from Experiments with Accelerators and Storage Rings?
3(28)
C. Jarlskog
Introduction
3(2)
The Three Sectors of the Electroweak Model
5(1)
The Electroweak Model
6(3)
Untested Parts of the Electroweak Model
9(1)
The Number of Families, Nfam
10(3)
The Top Quark
13(3)
Evading limits on the top mass
16(1)
The Higgs Boson
16(3)
No fundamental Higgs?
18(1)
QCD
19(1)
Beyond the Standard Model
20(3)
Grand unification and supersymmetry
20(2)
Other extended gauge models
22(1)
Links with Cosmology
23(1)
Why Higher Energy Accelerators
23(8)
References
25(6)
II CIRCULAR ACCELERATORS AND STORAGE RINGS
Beam Optics and Lattice Design
31(36)
P. J. Bryant
Introduction
31(1)
Advent of Alternating Gradient Focusing
32(2)
Brief Introduction to Lattice Analysis
34(8)
Matrix formulation of lattice
36(2)
Parameterization of the particle motion
38(2)
General features of the particle motion
40(2)
Early Lattice Design
42(2)
Long lattices and arcs
42(2)
Collins' straight section
44(1)
Matching and General Lattice Design
44(10)
Dispersion suppressors
45(2)
Low-β insertions
47(2)
Extraction and injection
49(2)
Machine geometries
51(1)
Particle-antiparticle storage rings
51(1)
Two-ring colliders
52(1)
Lattice symmetries
53(1)
Impact of superconductivity
54(1)
More Exotic Interaction Regions
54(3)
Final focus schemes
54(1)
Disruption
55(1)
Zero-angle crossing in two-ring colliders
55(1)
Crab crossing
56(1)
Monochromator
57(1)
Achromatic dissipative focusing and apochromatic focusing
57(1)
Other Insertions, Special Lattices and Exotic Elements
57(3)
Particle collection after a target
57(1)
Imaginary transition lattices
58(1)
Terwilliger scheme
59(1)
Stochastic cooling
59(1)
Electron cooling
60(1)
Crystal extraction
60(1)
High-Brightness Lattices
60(3)
Future Trends
63(4)
References
63(4)
Collective Phenomena and Instabilities
67(37)
J. Gareyte
Introduction
67(1)
Beam Modes
68(12)
Continuous beams
68(2)
Bunch mode
70(1)
Longitudinal modes
71(3)
Transverse modes
74(3)
The effect of chromaticity on transverse modes
77(3)
Wake Fields and Coupling Impedances
80(5)
Classical Instabilities and Collective Effects
85(6)
Instabilities mechanism
85(1)
Short range effects
85(2)
The head-tail instability
87(1)
Coupled bunch instabilities
88(3)
Landau Damping
91(3)
Beam Breakup and Mode Coupling Instability
94(7)
Beam breakup
94(3)
Mode coupling instability
97(4)
Longitudinal Turbulence and Bunch Lengthening
101(1)
Conclusion
102(2)
References
103(1)
The Relativistic Heavy Ion Collider, RHIC
104(28)
H. Foelsche
H. Hahn
M. Harrison
S. Ozaki
M. J. Rhoades-Brown
Introduction
104(3)
Scope of the RHIC Project
107(6)
Collider configuration
107(2)
Collider scenario
109(1)
Collider performance estimates
110(3)
Heavy Ion Injection into RHIC
113(6)
Overview
113(1)
The RHIC injector complex
114(5)
The RHIC Lattice
119(6)
Overview of RHIC lattice
119(2)
The arcs
121(1)
The insertions or interaction regions
122(3)
Transition energy and chromaticity
125(1)
The RHIC RF System
125(4)
Overview of rf system
125(1)
The acceleration rf system
126(2)
The storage rf system
128(1)
Luminosity Lifetime in a Heavy Ion Collider
129(3)
References
130(2)
Beauty-and Tau-Charm Factories
132(31)
Y. Baconnier
Introduction
133(1)
Particle Physics Requirements
133(3)
B-factory
133(2)
Tau-charm factory
135(1)
History of the Concept
136(1)
Conditions for High Luminosity
136(4)
Luminosity limitations
137(1)
Emittance and impedance
138(1)
Beam-beam parameter
139(1)
Tau-Charm Factory Interaction Region
140(3)
Low beta matching
140(1)
Separation
141(1)
Background and masking
142(1)
Rings linear optics
142(1)
Dynamic aperture
143(1)
B-Factory Interaction Area
143(3)
Energy transparency
143(1)
Low beta optics
144(1)
Magnetic separation
145(1)
Vertex detector protection
146(1)
RF System
146(4)
The argument for short bunches
147(1)
RF voltage
147(1)
Momentum compaction and energy dispersion
148(1)
Multibunch instabilities
148(1)
RF technology
148(1)
RF stability
149(1)
Vacuum System
150(1)
Nonconventional Schemes
151(3)
Crab-crossing
151(2)
Monochromators
153(1)
Status of Proposals
154(9)
Tau-charm factories
154(1)
B-factories proposals
154(2)
References
156(7)
III LINEAR ACCELERATORS
General Aspects of Linear Accelerators
163(31)
Pierre Lapostolle
Introduction
163(1)
Brief History of Linear Accelerators
163(2)
The original linacs
163(1)
First electron linacs
164(1)
First proton linacs
165(1)
General Principles of the Dynamics of Acceleration
165(7)
Phase stability
166(3)
Focusing problems
169(2)
Focusing methods
171(1)
General Properties of Accelerating Structures
172(7)
Accelerating structure efficiency; shunt impedance
173(1)
Sensitivity to perturbations
174(1)
Types of accelerating structures
175(4)
Electron Linacs
179(5)
Electron injector (source and preacceleration)
179(1)
Electron acceleration
180(1)
Electron beam intensity limitations
181(1)
Electron linac applications
182(2)
Proton Linacs
184(5)
Injection into a proton linac
184(1)
Drift tube linacs
185(1)
Side-coupled cavity linacs
185(1)
Beam brightness limitations in proton linacs
186(2)
Proton linac applications
188(1)
Heavy Ion Linacs
189(3)
Special difficulties relative to ions
189(1)
Ion source and injection
189(1)
Accelerating structures --- normal and superconducting
190(1)
Heavy ion linac applications
191(1)
Introduction Linacs
192(2)
References
193(1)
RF Quadrupoles as Accelerators
194(25)
A. Schempp
Introduction
194(3)
RFQ Design
197(8)
Beam dynamics design considerations
197(4)
RF-cavity design
201(4)
Performance of RFG Accelerators
205(11)
High current injectors
205(5)
Heavy ion RFQs
210(4)
Special applications
214(2)
Conclusions
216(3)
References
217(2)
Accelerator Physics of the Stanford Linear Collider and SLC Accelerator Experiments Towards the Next Linear Collider
219(30)
John T. Seeman
Introduction
220(3)
Polarized Electron Source
223(2)
Damping Rings
225(2)
Bunch Length Compressor
227(2)
Linear Accelerator
229(8)
Longitudinal effects
229(1)
Transverse effects
230(7)
Arcs
237(1)
Final Focus
238(3)
Detector Backgrounds
241(1)
SLC Results
241(2)
Studies of the Next Linear Collider at the SLC
243(6)
Final focus test beam (FFTB)
243(3)
Emittance dynamics test area (EDTA) at the SLC
246(1)
Acceleration structure setup (ASSET) in the SLC
247(1)
References
248(1)
The Road to TeV Electron-Positron Colliders
249(36)
Y. Kimura
Introduction
249(2)
General Linear Collider Design
251(10)
Beam-beam interaction
251(5)
Machine configuration and basic parameters
256(5)
Research-and-Development on TeV Linear Colliders
261(18)
Electron and positron sources
261(3)
Damping ring
264(2)
RF power sources
266(5)
Accelerating structures
271(7)
Final focus
278(1)
Test facilities
279(1)
Summary
279(6)
References
280(5)
IV NEW METHODS AND TECHNOLOGIES
Superconducting Magnets for Accelerators
285(36)
G. Brianti
T. Tortschanoff
The Need for Superconducting Magnets
285(1)
General Layout
286(4)
Some Particularities of Superconducting Accelerator Magnets
290(1)
Design Calculations
291(6)
Analytical calculations in straight part
292(2)
Field imperfections and multipole formulation
294(1)
Numerical simulation
295(2)
Superconducting Material, Working Point and Coils
297(4)
Mechanical Structure and Tolerances
301(3)
Materials and components
301(1)
Cool-down and force containment
302(1)
Twin aperture magnets
302(2)
Tolerances
304(1)
Remanence Due to Persistent Currents
304(3)
Quench and Protection
307(2)
Cryostat
309(3)
Examples of Some Accelerator Magnets
312(6)
Concluding Remarks
318(3)
References
319(2)
Superconducting Cavities for High Energy Accelerators and Storage Rings
321(37)
H. Lengeler
Introduction
321(1)
Basics of RF Superconductivity
322(9)
BCS surface resistance
322(3)
The residual resistance and other non-BCS losses
325(1)
Field limitations
325(6)
Advantages of Superconducting Cavities
331(1)
SC Cavities for High Energy ± Storage Rings
332(2)
SC Accelerators for Nuclear Physics
334(1)
SC Cavities for Free Electron Lasers (FEL)
335(2)
High Gradient Applications, Linear Colliders
337(2)
High Intensity Applications, Particle Factories
339(4)
Input Couplers
343(2)
Higher Order Mode (hom) Couplers
345(2)
Frequency Tuners
347(4)
Technology
351(7)
References
354(4)
Cooling of Particle Beams
358(72)
D. Mohl
Introduction
358(1)
Beam Temperatures
358(5)
Damping by Synchrotron Radiation
363(13)
Overview
363(3)
Damping of energy oscillations
366(2)
Damping of betatron oscillations
368(2)
Radiation excitation
370(5)
Implications for the storage ring design
375(1)
Stochastic Cooling
376(13)
Overview
376(1)
Simplified theory of stochastic cooling
377(1)
The basic set-up
377(1)
Notion of beam samples
378(2)
Cooling of random samples
380(2)
Mixing
382(2)
Discussion
384(1)
Cooling of multiple charged ions
385(1)
Practical details
386(1)
Palmer-Hereward cooling
386(1)
Betatron oscillation cooling
387(2)
Description in frequency domain
389(27)
Beam Schottky noise
389(4)
Cooling by harmonics
393(2)
Noise-to-signal ratio by harmonics
395(1)
Mixing pickup to kicker
396(1)
Betatron oscillation and transverse Schottky signals
397(4)
Enhancement of Schottky signals or feedback via the beam
401(1)
Distribution functions and particle flux
402(4)
Discussion and examples
406(2)
Momentum cooling by filter and transit time methods
408(1)
Calculation of the coefficients F and D for filter cooling
409(5)
Stochastic cooling hardware
414(2)
Simple Theory of Electron Cooling
416(8)
General
416(1)
Analogy with mixing of gases
417(1)
Analogy with stopping in matter
417(2)
An excursion to flattened distributions, magnetised electrons and crystallised beams
419(1)
Electron capture
420(2)
Cooling equipment
422(1)
Comparison of electron and stochastic cooling
423(1)
Conclusions
424(6)
References
425(5)
Acceleration of Polarized Particles
430(35)
J. Buon
Introduction
430(2)
Polarization of a Spin-1/2 Particle Beam
432(1)
Spin Precession in Static Electromagnetic Field
433(3)
Spin-Orbit Coupling
436(1)
Spin Resonances
437(2)
Acceleration of Polarized Protons in Synchrotrons
439(3)
Depolarization by Resonance Crossing in Proton Synchrotrons
442(5)
Siberian Snakes
447(3)
Polarization Build-up of Electron in Storage Rings
450(2)
Depolarization by Resonant Spin Diffusion in Electron Storage Rings
452(6)
Energy Calibration by Depolarization on an Artificial RF Spin Resonance
458(1)
Polarized Beams for Electron-Positron and Electron-Proton Experiments
459(6)
References
462(3)
Ion Sources
465(58)
Helmut Haseroth
Heinrich Hora
Introduction
465(4)
EBIS and ECR
469(3)
The Lead Ion Source for the CERN SPS
472(5)
Limits and problems of the existing machines
472(1)
Intensity losses
473(1)
The plans at CERN
474(1)
Low-energy acceleration
475(1)
The linac
475(1)
Acceleration in the synchrotrons and booster
476(1)
Proton synchrotron
476(1)
Future improvements
477(1)
Phenomena of the Laser Ion Source
477(6)
General overview
478(2)
Developments of an ion source for injection by a linac
480(1)
Laser ion source using cyclotrons
481(2)
Physics of Laser Ion Sources
483(32)
Non-linearities in hydromechanics and optical response
483(6)
Suprathermal ``hot'' electrons and resonances
489(5)
Self-focusing (filamentation)
494(6)
Parametric instabilities
500(5)
Dynamic electric fields inside plasmas and double layers causing acceleration
505(5)
Pulsating (stuttering) interaction and smoothing
510(5)
Consequences and Possibilities of the Laser Ion Source
515(8)
References
518(5)
A Good Idea at the Time
523(22)
Bryan W. Montague
Introduction
524(2)
Euphoria of the Fifties
526(3)
Fixed field alternating gradient
527(1)
Budker plasma betatron
528(1)
Oliphant air-cored synchrotron
529(1)
Renaissance of Relativistic Plasma
529(5)
Veksler collective-ion accelerator
529(3)
ERA development
532(2)
Construction and Comprehension
534(3)
DCI project
534(1)
Beam-beam elucidation
535(1)
Birth of linear colliders
536(1)
The Quest for High Energy Gradients
537(4)
Two-beam accelerators
537(1)
Switched-power linac
537(1)
Plasma beat-wave accelerator
538(2)
Wake-field acceleration
540(1)
Epilogue
541(4)
References
544(1)
Geodesy for Particle Accelerators
545(42)
Jean Gervaise
Michel Mayoud
Introduction
546(2)
The LEP Geodetic Network
548(14)
Principle of measurement with laser instruments using two different wavelengths in the visible spectrum
548(2)
LDM 2 Terrameter
550(2)
Measurement of the LEP geodetic network with the Terrameter
552(5)
Deviation of the vertical
557(2)
The CERN GPS campaigns
559(3)
Underground Geodesy
562(4)
The LEP tunnel
562(1)
Link between surface and underground geodesy
562(1)
Basic framework
562(1)
Scheme of operations
562(1)
Guiding control with gyro traverse
563(1)
General principles
563(1)
Automation of a WILD GAK 1 gyro
564(1)
The MOM Gi-Bll gyro
564(1)
Processing and results
564(2)
Installation
566(16)
The theoretical machine
566(1)
Geodetic specificities of large projects
566(1)
Theoretical positioning of LEP
566(2)
Instrumentation
568(1)
Invar wire and CERN calibration bench
568(4)
CERN reference sockets
572(1)
Length measurement devices
573(1)
Offset measurement devices
574(2)
Adjustment of observations
576(1)
Adjustment programs
576(1)
Radial and vertical smoothing
576(1)
Results for LEP metrology
577(1)
The CERN simulation method
577(1)
Study of the LEP reference network
578(2)
Full simulation of ten hypothetical surveys of LEP
580(1)
Actual results of the metrology
581(1)
Conclusion
582(5)
References
583(4)
V APPLICATIONS
Synchrotron Radiation Sources
587(37)
S. Tazzari
Introduction
587(4)
Introductory remarks
587(1)
Experimental requirements
588(1)
Brilliance and the need for low emittance lattices
589(2)
The Production of Synchrotron Radiation
591(7)
Main characteristics of bending magnet radiation
591(1)
Insertion devices: general properties
592(5)
Choice of the accelerator energy
597(1)
Low Emittance (LE) Lattices
598(5)
Introductory remarks
598(1)
Beam emittance
598(3)
Effects of insertion devices
601(2)
Some Problems Characteristic of Low Emittance Lattices
603(11)
Dynamic aperture
603(2)
Beam position stability
605(2)
Collective effects
607(2)
Ion and dust particle trapping
609(2)
Lifetimes and vacuum-related issues
611(3)
SR Sources for Industrial and Medical Applications
614(3)
Compact SR sources for lithography
614(2)
SR sources for medical applications
616(1)
FEL Sources
617(7)
General remarks
617(2)
Storage ring FELs
619(1)
Linear accelerator drawn FELs
620(1)
References
621(3)
The Impact of Pulsed Spallation Neutron Sources on Condensed Matter Research
624(25)
J. L. Finney
Neutrons and Neutron Sources
624(4)
Neutrons in condensed matter research
624(1)
Continuous and pulsed neutron sources
625(3)
Scientific Exploitation of Pulsed Spallation Neutron Sources
628(17)
Powder diffraction
629(4)
Large scale structures
633(2)
Surface reflectometry
635(2)
Amorphous materials
637(2)
Liquids
639(1)
Inelastic scattering
640(3)
Spectroscopy
643(2)
Summary
645(4)
References
646(3)
Inertial Fusion with Heavy Ions
649(38)
I. Hofmann
Introduction
649(1)
Basic Principles
650(8)
Requirements for fusion energy production
650(2)
Directly and indirectly driven targets
652(3)
Intense heavy ion beams
655(1)
Range-energy relationship
655(1)
Current transport limit
656(2)
Driver Accelerators
658(15)
Current multiplication schemes
658(1)
RF linac/storage ring system
658(1)
Basic limits
658(4)
Driver example
662(5)
Advanced driver using non-Liouvillian method
667(4)
Induction linear accelerator
671(2)
Reactor and System Studies
673(2)
General remarks
673(1)
HIBALL-study
673(1)
Layout
673(2)
Safety and environmental issues
675(1)
Further system studies
675(1)
Experimental Facilities
675(5)
The SIS/ESR facility
676(1)
Procedures in the SIS/ESR
677(1)
Limits to high phase space densities in the ESR
677(1)
Performance of target experiments
678(2)
The HIFAR/ILSE project
680(1)
Outlook
680(7)
References
683(4)
High Energy Accelerators in Medicine
687(27)
P. Mandrillon
Historical Background
687(2)
Physical and Biological Rationale
689(4)
Physical selectivity
689(2)
Biological effectiveness
691(2)
Accelerators
693(13)
Beam Delivery
706(3)
The Gantry
709(2)
Conclusions
711(3)
References
712(2)
Industrial Applications of Accelerators
714(1)
Klaus H. W. Bethge
Introduction
714(2)
Beams and Materials
716(1)
Materials Modification
717(1)
Modification by electron beams
718(1)
Effects in semiconductors
718(1)
Electron irradiation of metals
718(1)
Electron irradiation of polymers
718(1)
Modification by ion beams
719(1)
Ion implantation in semiconductors
720(1)
Ion implantation into metals and insulators
721(1)
Materials Analysis
721(1)
Electrons, positrons and muons (leptons)
722(1)
Ions and nuclei as probes
723(2)
Rutherford backscattering spectrometry (RBS)
725(1)
Particle-induced x-ray emission (PIXE)
725(1)
Particle-induced γ-emission (PIGE)
726(1)
Elastic recoil detection analysis (ERDA)
726(1)
Nuclear reaction analysis (NRA)
727(1)
Charged particle activation analysis (CPAA)
728(1)
Accelerator mass spectrometry (AMS)
728(1)
Neutron probes
728(2)
Materials Processing
730(1)
Materials processing by electron beams
730(3)
Materials processing by ion bombardment
733(1)
Materials processing by electromagnetic radiation
734(4)
Accelerators in Industry
738(1)
Economical requirements
738(1)
Technical requirements
738(3)
References
741