Atjaunināt sīkdatņu piekrišanu

Advances in Bias and Fairness in Information Retrieval: 5th International Workshop, BIAS 2024, Washington, DC, USA, July 18, 2024, Revised Selected Papers 2024 ed. [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 103 pages, height x width: 235x155 mm, 25 Illustrations, color; 5 Illustrations, black and white; IX, 103 p. 30 illus., 25 illus. in color., 1 Paperback / softback
  • Sērija : Communications in Computer and Information Science 2227
  • Izdošanas datums: 23-Oct-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031719743
  • ISBN-13: 9783031719745
  • Mīkstie vāki
  • Cena: 55,83 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 65,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 103 pages, height x width: 235x155 mm, 25 Illustrations, color; 5 Illustrations, black and white; IX, 103 p. 30 illus., 25 illus. in color., 1 Paperback / softback
  • Sērija : Communications in Computer and Information Science 2227
  • Izdošanas datums: 23-Oct-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031719743
  • ISBN-13: 9783031719745
This book constitutes the refereed proceedings of the 5th International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2024, held in Washington, DC, USA, on July 18, 2024 in hybrid mode.





The 7 full papers included in this book were carefully reviewed and selected from 20 submissions. They are grouped into three thematic sessions, each focusing on distinct aspects of bias and fairness in information retrieval.
An Offer you Cannot Refuse? Trends in the Coercive Impact of Amazon Book
Recommendations.- Retention Induced Biases in a Recommendation System with
Heterogeneous Users.- Political Bias of Large Language Models in Few-shot
News Summarization.- Fairness Analysis of Machine Learning-Based Code
Reviewer Recommendation.- Bias Reduction in Social Networks through
Agent-Based Simulations.- vivaFemme: Mitigating Gender Bias in Neural Team
Recommendation via Female-Advocate Loss Regularization.- Simultaneous
Unlearning of Multiple Protected User Attributes From Variational Autoencoder
Recommenders Using Adversarial Training.