Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advances in Biofeedstocks and Biofuels, Biofeedstocks and Their Processing

Edited by (Institute of Engineering & Technology, Mangalayatan University), Edited by (Harcourt Butler Technical University (Formerly Harcourt Butler Technological Institute))
  • Formāts - PDF+DRM
  • Cena: 200,99 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The most comprehensive and up-to-date treatment of all the possible aspects for biofeedstock processing and the production of energy from biofeedstocks

Biofuels production is one of the most extensively studied fields in the energy sector that can provide an alternative energy source and bring the energy industry closer to sustainability. Biomass-based fuel production, or renewable fuels, are becoming increasingly important as a potential solution for man-made climate change, depleted oil reserves, and the dangers involved with hydraulic fracturing (or "fracking"). The price of oil will always be volatile and changeable, and, as long as industry and private citizens around the world need energy, there will be a need for alternative energy sources. The area known as "biofuels and biofeedstocks" is one of the most important and quickly growing pieces of the "energy pie."

But biofuels and biofeedstocks are constantly changing, and new processes are constantly being created, changed, and improved upon. The area is rapidly changing and always innovative. It is important, therefore, that books like the volumes in this series are published and the information widely disseminated to keep the industry informed of the state-of-the-art.

This first volume in this groundbreaking new series is a collection of papers from some of the world's foremost authorities on biofeedstocks and biofuels, covering biofeedstocks and how they are processed. It is a must-have for any engineer, scientist, technician, or student working in this area.
1 Production of Bioenergy in the Framework of Circular Economy: A Sustainable Circular System in Ecuador
1(32)
Vega-Quezada Cristhian
Blanco Maria
Romero Hugo
1.1 Introduction
2(3)
1.1.1 Energy and Bioenergy
2(2)
1.1.2 Ecuadorian Case
4(1)
1.2 A Sustainable Circular System in Ecuador
5(14)
1.2.1 Biogas
5(3)
1.2.1.1 CO2 Emissions
8(4)
1.2.1.2 Potential Electricity Power
12(2)
1.2.2 Biodiesel
14(1)
1.2.2.1 Biodiesel in Ecuador
15(1)
1.2.3 Microalgae Biodiesel
16(2)
1.2.3.1 Biomass Production
18(1)
1.2.3.2 Lipid Extraction
18(1)
1.3 Microalgae versus Palm Oil in Ecuador
19(8)
1.3.1 Palm Oil
20(1)
1.3.2 Microalgae Oil
21(2)
1.3.2.1 Microalgae in Open Ponds
23(1)
1.3.2.2 Microalgae in Laminar Photobioreactor
24(3)
1.4 Discussion
27(2)
1.5 Conclusion
29(4)
Acknowledgements
29(1)
References
30(3)
2 The Impact of Biomass Feedstock Composition and Pre-treatments on Tar Formation during Biomass Gasification
33(22)
John Corton
Paula Blanco-Sanchez
Zakir Khan
Jon Paul McCalmont
Xi Yu
George Fletcher
Steve Croxton
James Sharp
Manosh C. Paul
Ian A. Watson
Iain S. Donnison
2.1 Introduction
34(1)
2.2 Tar Composition
35(2)
2.3 Tar Formation Cell Wall Polymers and Ash Composition
37(4)
2.3.1 The Impact of Plant Type and Blending Upon Tar Production
38(1)
2.3.2 Blending
39(1)
2.3.3 Ash Composition
40(1)
2.4 Thermochemical Pre-treatments for Gasification
41(4)
2.4.1 Torrefaction
41(1)
2.4.2 Slow Pyrolysis
42(1)
2.4.3 Intermediate Pyrolysis
43(1)
2.4.4 Fast Pyrolysis
43(2)
2.5 Processing Options that Exploit Conversion Route Integration
45(3)
2.6 Conclusion
48(7)
Acknowledgements
50(1)
References
50(5)
3 Key Pretreatment Technologies for An Efficient Bioethanol Production from Lignocellulosics
55(30)
Archana Mishra
Sanjoy Ghosh
3.1 Introduction
56(2)
3.2 Pretreatment Methods for Lignocellulosic Biomass
58(17)
3.2.1 Parameters for Effective Pretreatment of Lignocellulosics
59(2)
3.2.2 Important Pretreatment Methods
61(1)
3.2.2.1 Physical or Mechanical Methods
61(1)
3.2.2.2 Physico-chemical Methods
62(5)
3.2.2.3 Chemical Methods
67(7)
3.2.2.4 Biological Methods
74(1)
3.3 Conclusion and Future Perspectives
75(10)
References
78(7)
4 Present Status on Enzymatic Hydrolysis of Lignocellulosic Biomass for Bioethanol Production
85(12)
Arindam Kuila
Vinay Sharma
Vijay Kumar Garlapati
Anshu Singh
Lakshmishri Roy
Rintu Banerjee
4.1 Introduction
86(1)
4.2 Hydrolysis/Saccharification
87(6)
4.2.1 Cellulase
87(1)
4.2.2 Screening of Cellulase-producing Microorganisms
88(2)
4.2.3 Cellulase Production
90(1)
4.2.4 Factors Affecting the Cellulase Mediated Hydrolysis
90(3)
4.3 Future prospects of enzymatic hydrolysis
93(4)
References
93(4)
5 Biological Pretreatment of Lignocellulosic Biomaterials
97(24)
Sandeep Kaur Saggi
Geetika Gupta
Pinaki Dey
5.1 Introduction
97(9)
5.1.1 Different Source for Bioethanol Production
99(1)
5.1.2 Lignocellulosic Materials
100(1)
5.1.3 Cellulose
101(1)
5.1.4 Hemicellulose
102(1)
5.1.5 Xylan
103(1)
5.1.6 Lignin
104(2)
5.1.7 Lignin Carbohydrate Interactions
106(1)
5.2 Pretreatment
106(1)
5.2.1 Pretreatment
106(1)
5.3 Microbial Pretreatment Process
107(6)
5.3.1 Fungi
107(5)
5.3.2 Bacteria
112(1)
5.4 Conclusion
113(8)
References
113(8)
6 Anaerobic Digestion and the Use of Pre-treatments on Lignocellulosic Feedstocks to Improve Biogas Production and Process Economics
121(28)
Laura Williams
Joe Gallagher
David Bryant
Sreenivas Rao Ravella
6.1 Introduction
121(3)
6.2 Feedstocks Available for AD
124(6)
6.2.1 Lignocellulosic Feedstock Analysis and Substrate Suitability
124(5)
6.2.2 Substrate Parameters and Co-digestion
129(1)
6.3 Feedstock Pre-treatment to Improve AD
130(6)
6.3.1 Available Pre-treatment Processes
131(2)
6.3.2 Pre-treatment Effects on Substrate
133(1)
6.3.3 Effects of Pre-treatment on Methane Yields
134(2)
6.4 Pre-treatment and Optimizing AD
136(4)
6.4.1 Advances in Pre-treatment Methods and AD Conditions
136(2)
6.4.2 Value-added Products and AD
138(2)
6.5 Conclusion
140(9)
Acknowledgments
141(1)
References
141(8)
7 Algae: The Future of Bioenergy
149(20)
Nivas Manohar Desai
7.1 Introduction
149(2)
7.2 Technological Innovations for Algae Cultivation, Harvesting and Drying
151(11)
7.2.1 Cultivation Practices
152(1)
7.2.1.1 Open Cultivation Systems
152(1)
7.2.1.2 Closed Cultivation Systems (Photobioreactors)
153(1)
7.2.1.3 Algal Turf Scrubber (ATS)
154(3)
7.2.1.4 Sea-based Cultivation Systems
157(1)
7.2.2 Harvesting of Biomass
158(1)
7.2.2.1 Settling Ponds
159(1)
7.2.2.2 Filtration
159(1)
7.2.2.3 Centrifugation
159(1)
7.2.2.4 Flotation
160(1)
7.2.2.5 Flocculation
160(1)
7.2.2.6 Electrolytic Coagulation
161(1)
7.2.3 Energy Efficiencies of Harvesting Processes
161(1)
7.2.4 Algal Drying
162(1)
7.3 Algae-based Bioenergy Products
162(6)
7.3.1 Biofuel and Biodiesel
163(1)
7.3.2 Biogas (Biomethane Production)
164(1)
7.3.3 Bioethanol
165(2)
7.3.4 Biohydrogen
167(1)
7.3.4.1 Direct Biophotolysis
167(1)
7.3.4.2 Indirect Biophotolysis
168(1)
7.3.4.3 Photo Fermentation
168(1)
7.4 Concluding Remarks
168(1)
Acknowledgement 169(1)
References 169(4)
Index 173
Lalit K. Singh, PhD, was educated at Harcourt Butler Technological Institute Kanpur and received his doctorate from the Indian Institute of Technology Roorkee. Through his research, he developed a novel sequential-co-culture technique for the efficient bioconversion of sugars to bioethanol, and important innovation in the field of biofuels and fermentation technology. He has more than 25 publications in international journals, conference proceedings, and chapters in books. He has also organized several national seminars, faculty development programs and other academic activities.

Gaurav Chaudhary, PhD is an Assistant Professor in the Department of Biotechnology at Mangalayatan University, Aligarh, having earned Since a doctorate from the Indian Institute of Technolog in Roorkee, India in the field of biofuel/bioenergy. He has published five research articles in peer reviewed international journals and presented his research work in several national and international conferences. Currently he is involved in teaching & research development activities in the areas of biochemical engineering, biofuels, bioenergy, and phytochemicals.