Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advances in Biofeedstocks and Biofuels, Production Technologies for Biofuels

Edited by (Mangalayatan University, Aligarh; Indian Institute of Technology in Roorkee, India), Edited by (Harcourt Butler Technological Institute Kanpur; Indian Institute of Technology Roorke)
  • Formāts - PDF+DRM
  • Cena: 233,12 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This second volume in the Advances in Biofeedstocks and Biofuels series focuses on the latest and most up-to-date technologies and processes involved in the production of biofuels.

Biofuels production is one of the most extensively studied fields in the energy sector that can provide an alternative energy source and bring the energy industry closer to sustainability. Biomass-based fuel production, or renewable fuels, are becoming increasingly important as a potential solution for man-made climate change, depleted oil reserves, and the dangers involved with hydraulic fracturing (or "fracking"). The price of oil will always be volatile and changeable, and, as long as industry and private citizens around the world need energy, there will be a need for alternative energy sources. The area known as "biofuels and biofeedstocks" is one of the most important and quickly growing pieces of the "energy pie."

Biofuels and biofeedstocks are constantly changing, and new processes are constantly being created, changed, and improved upon. The area is rapidly changing and always innovative. It is important, therefore, that books like the volumes in this series are published and the information widely disseminated to keep the industry informed of the state-of-the-art.

This second volume in the Advances in Biofeedstocks and Biofuels series focuses on the production of biofuel, covering all of the major biofuels, such as biodiesel, biohydrogen, bioethanol, and others. This engaging text touches on all of the most important new processes and technologies, providing the most up-to-date coverage of the science available to industry. It is a must-have for any engineer or scientist working with biofuel technology.
1 Processing of Bioethanol from Lignocellulosic Biomass
1(24)
Rebecca Gunn
Pattanathu K.S.M. Rahman
1.1 Introduction
2(1)
1.2 Method
3(15)
1.2.1 Pretreatment
3(7)
1.2.2 Saccharification
10(1)
1.2.3 Detoxification
11(1)
1.2.4 Organism Selection
12(4)
1.2.5 Media Composition and Operating Parameters
16(1)
1.2.6 Ethanol Recovery
17(1)
1.3 Discussion
18(7)
References
20(5)
2 A Perspective on Current Technologies Used for Bioethanol Production from Lignocellulosics
25(42)
Archana Mishra
Sanjoy Ghosh
2.1 Introduction
26(1)
2.2 Bioethanol Production from Various Feedstocks
26(6)
2.2.1 Bioethanol Production from Sucrose Based Feedstocks
28(1)
2.2.2 Bioethanol Production from 1st Generation Feedstocks (Starch)
28(1)
2.2.3 Bioethanol Production from 2nd Generation Feedstocks (Lignocellulosic Biomass)
29(3)
2.3 Various Conversion Paths or Technology Routes from Lignocellulosic Biomass to Ethanol
32(14)
2.3.1 Seperate Hydrolysis and Fermentation (SHF)
33(2)
2.3.2 Simultaneous Saccharification and Fermentation (SSF)
35(2)
2.3.3 Simultaneous Saccharification and Co-Fermentation (SSCF)
37(1)
2.3.4 Consolidated Bioprocessing (CBP) or Direct Microbial Conversion (DMC)
37(3)
2.3.5 Thermochemical Conversion Processes or Syngas Platform
40(1)
2.3.5.1 Syngas Catalytic Conversion
41(2)
2.3.5.2 Biological Path or Syngas Fermentation Route
43(3)
2.4 Bioethanol Production Technologies Based on Different Fermentation Modes
46(10)
2.4.1 Batch Fermentation
47(1)
2.4.2 Fed Batch or Semi-Batch Fermentation
48(1)
2.4.3 Continuous Fermentation
49(1)
2.4.4 Fermentation Using Immobilized Cells
50(2)
2.4.5 Fermentation Using Process Stream Recycling
52(4)
2.5 Conclusion and Preferred Technology Route 53 References
56(11)
3 Immobilized Enzyme Technology for Biodiesel Production
67(40)
Sarah M. Meunier
Hamid-Reza Kariminia
Raymond L. Legge
3.1 Introduction
68(2)
3.2 Production of Biodiesel
70(1)
3.3 Immobilized Lipase for Biodiesel Production
71(18)
3.3.1 Enzyme Selection
73(6)
3.3.2 Enzyme Immobilization Methods
79(1)
3.3.3 Reaction Conditions
79(10)
3.4 Reaction Kinetics
89(6)
3.5 Bioreactor Configurations
95(5)
3.6 Conclusions 99 References
100(7)
4 Oleaginous Yeast - A Promising Candidatea for High Quality Biodiesel Production
107(22)
Alok Patel
Parul A Pruthi
Vikas Pruthi
4.1 Introduction
108(2)
4.2 Advantages of Using Biodiesel as Vehicular Fuel
110(1)
4.3 Technical Aspects of Biodiesel Production Using Oleaginous Yeast
111(3)
4.4 Selection of Low-Cost Feedstock for Biodiesel Production
114(3)
4.5 Triacylglycerols (TAGs) Accumulation in Oleaginous Yeasts
117(4)
4.6 Conclusion 120 References
121(8)
5 Current Status of Biodiesel Production from Microalgae in India
129(26)
Vijay Kumar Garlapati
Rakesh Singh Gour
Vipasha Sharma
Lakshmi Shri Roy
Jeevan Kumar Samudrala Prashant
Anil Kant
Rintu Banerjee
5.1 Introduction
130(2)
5.2 Algal Species for Oil Production
132(1)
5.3 Engineering Modifications
132(5)
5.3.1 Production of High Density Cultivated Microalgae
134(1)
5.3.1.1 Cultivation Conditions
134(1)
5.3.1.2 To Get High Lipid Content
135(2)
5.4 Production of Biodiesel
137(5)
5.4.1 Culturing of Microalgae
137(1)
5.4.2 Harvesting
138(4)
5.5 Current Status of Biodiesel Production in India and Abroad
142(5)
5.6 SWOT Analysis of Biofuels in India
147(1)
5.7 Challenges
148(1)
5.8 Conclusions
149(6)
References
149(6)
6 Biobutanol: An Alternative Biofuel
155(22)
Neeraj Mishra
Akhilesh Dubey
6.1 Introduction
156(3)
6.1.1 Advantages of Biobutanol
158(1)
6.2 Biobutanol as Alternative Fuel
159(2)
6.3 Biobutanol Production
161(12)
6.3.1 Steps to Biobutanol Production
163(1)
6.3.2 Directed ABE Fermentation to Butanol
164(2)
6.3.3 Substrates Used for Biobutanol Production
166(2)
6.3.4 Microbial Strains for Biobutanol Production
168(1)
6.3.5 Purification of Biobutanol
169(1)
6.3.5.1 Adsorption for Butanol Recovery
169(1)
6.3.5.2 Membrane Processes for Recovery of Butanol
169(1)
6.3.5.3 Pervaporation for Recovery of Butanol
170(1)
6.3.5.4 Gas Stripping for Recovery of Butanol
170(3)
6.4 Advancements in Biobutanol Production 171 Summary 172 References
173(4)
7 The Production of Biomethane from the Anaerobic Digestion of Microalgae
177(24)
Tom Bishop
Pattanathu K.S.M. Rahman
7.1 Introduction
177(2)
7.2 The Process
179(10)
7.2.1 Selection and Cultivation of Microalgae
180(1)
7.2.2 Pre-Treatment
181(3)
7.2.2.1 Thermal Pre-Treatment
184(1)
7.2.2.2 Mechanical Pre-Treatment
185(1)
7.2.2.3 Chemical Pre-Treatment
185(1)
7.2.2.4 Biological Pre-Treatment
185(1)
7.2.3 Lipid Extraction
185(1)
7.2.4 Digestion
186(2)
7.2.4.1 Inhibition of the Digestion Process
188(1)
7.2.4.2 Ammonia
188(1)
7.2.4.3 Volatile Fatty Acids
188(1)
7.2.4.4 Hydrogen Sulphide
188(1)
7.3 Downstream Processing and Use of Gaseous Products
189(5)
7.3.1 Purification
189(1)
7.3.1.1 Bioscrubbing
189(2)
7.3.1.2 Biotrickling
191(1)
7.3.2 Product Use: Current and Potential
192(2)
7.4 Conclusions
194(7)
References
195(6)
8 Electrohydrogenesis: Energy Efficient and Economical Technology for Biohydrogen Production
201(34)
Pratima Gupta
Piyush Parkhey
8.1 Introduction
202(4)
8.1.1 The Present Energy Scenario
202(1)
8.1.2 Biohydrogen: The Current Status
203(2)
8.1.3 Electrohydrogenesis: Need of the Hour
205(1)
8.2 Microbial Electroytic Cell
206(9)
8.2.1 Working Principle
206(2)
8.2.2 Design
208(1)
8.2.3 Setting up the Reactor
209(3)
8.2.4 Fuelling the MEC Reactor: Substrates
212(2)
8.2.5 Powering the MEC Reactor: Exoelectrogens
214(1)
8.3 Components of a Microbial Electroytic Cell
215(7)
8.3.1 Electrodes: Anode and Cathode
216(2)
8.3.2 Gas Collection Units
218(4)
8.4 Mathematical Expressions and Calculations
222(5)
8.4.1 Hydrogen Yield (YH2)
222(2)
8.4.2 Hydrogen Recovery
224(2)
8.4.3 Energy Efficiency
226(1)
8.5 Challenges and Future Prospects
227(8)
References
230(5)
Index 235
Lalit Kumar Singh, PhD, was educated at Harcourt Butler Technological Institute Kanpur and received his doctorate from the Indian Institute of Technology Roorkee. Through his research, he developed a novel sequential-co-culture technique for the efficient bioconversion of sugars to bioethanol, and important innovation in the field of biofuels and fermentation technology. He has more than 25 publications in international journals, conference proceedings, and chapters in books. He has also organized several national seminars, faculty development programs and other academic activities.

Gaurav Chaudhary, Ph.D. is an assistant professor in the Department of Biotechnology at Mangalayatan University, Aligarh, having earned a doctorate from the Indian Institute of Technology in Roorkee, India in the field of biofuel/bioenergy. He has published five research articles in peer-reviewed international journals and presented his research work in several national and international conferences. Currently he is involved in teaching & research development activities in the areas of biochemical engineering, biofuels, bioenergy, and phytochemicals.