Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advances in Computational Toxicology: Methodologies and Applications in Regulatory Science

Edited by
  • Formāts - PDF+DRM
  • Cena: 177,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides a comprehensive review of both traditional and cutting-edge methodologies that are currently used in computational toxicology and specifically features its application in regulatory decision making. The authors from various government agencies such as FDA, NCATS and NIEHS industry, and academic institutes share their real-world experience and discuss most current practices in computational toxicology and potential applications in regulatory science. Among the topics covered are molecular modeling and molecular dynamics simulations, machine learning methods for toxicity analysis, network-based approaches for the assessment of drug toxicity and toxicogenomic analyses. Offering a valuable reference guide to computational toxicology and potential applications in regulatory science, this book will appeal to chemists, toxicologists, drug discovery and development researchers as well as to regulatory scientists, government reviewers and graduate students interested in this field.
Computational Toxicology Promotes Regulatory Science.- Tasks, Major
Challenges and Emerging Modelling Methods for Computational
Toxicology.- Xenobiotic Metabolism by Cytochrome P450s: Insights Gained from
Molecular Simulations.- Applications of Molecular Modeling to Probe the
Mechanism of Endocrine Disruptor Action.- Mixture Toxicity.- Towards
reproducible in silico practice via OpenTox.- Combining Machine Learning and
Multilayer Networks for Toxicity Prediction.- Matrix and tensor factorization
for toxicity modelling.- Network-based In Silico Assessment of Drug
Cardiotoxicity.- Mode-of-action-guided chemical toxicity prediction: A novel
in silico approach for predictive toxicology.- Machine learning methods for
toxicity analysis.- Predictive modeling of Tox21 data.- The NTP DrugMatrix
Toxicogenomics Database and Analysis Tool.- Applications of Computational
Toxicology for Risk Assessment of Food Ingredients and Indirect Food
Additives.- In silico prediction of the point of departure (POD) with high
throughput data.- The application of topic modeling on drug safety signal
detection and analysis.- Molecular dynamics simulations and applications in
computational toxicology.- Computational modeling for prediction of
drug-induced liver injury in humans.- Genomics in vitro to in vivo
extrapolation (GIVIVE) for drug safety evaluation.
Dr. Huixiao Hong is the Chief of Bioinformatics Branch at the Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), FDA, Arkansas, USA and an Adjunct Professor at the University of Arkansas at Little Rock. He received his Ph.D. in computational chemistry from Nanjing University. Before he joined NCTR in 2007, Dr. Hong worked as the Manager of Bioinformatics Division at ICF International, as a senior computational scientist in ROW Science and held a research scientist position at Sumitomo Chemical Company, Japan. He was also a visiting scientist at National Cancer Institute at National Institutes of Health (NIH), USA and at Maxwell Institute in Leeds University, UK. Dr. Hong was an Associated Professor at Nanjing University in China. His research interests span the areas of chemoinformatics, computational chemistry, next-generation sequencing data analysis, genome-wide association studies, proteomics, and systems biology. Dr. Huixiao Hong has published more than 180 scientific manuscripts and received many awards during his career.