Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advances in Geophysics

Series edited by (School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA), Series edited by (Yale University, New Haven, Connecticut, U.S.A.)
  • Formāts: PDF+DRM
  • Sērija : Advances in Geophysics
  • Izdošanas datums: 21-Aug-2002
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780080526744
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 190,67 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Advances in Geophysics
  • Izdošanas datums: 21-Aug-2002
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780080526744
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Advances in Geophysics Volume 45 presents two main topics of noted interest to the geophysical community. The first topic is ice particles in the atmosphere. Mathematical descriptions of ice particle shapes, their growth rates, and their influence on cloud development are presented. The second topic is earthquakes and seismological mapping. The authors present their research involving predicting the location and intensity of earthquakes.

Recenzijas

"Should be on the bookshelf of every geophysicist."--Physics Today"This series has provided workers in many fields with invaluable reference material and criticism." --Science Progress"The entire series should be in the library of every group working in geophysics."--American Scientist

Preface ix
Shape and Microdynamics of Ice Particles and Their Effects in Cirrus Clouds
1(302)
Pao K. Wang
Ice Particles in the Atmosphere
1(6)
Ice Particles-A Personal Perspective
1(2)
Some Historical Notes on the Knowledge of Ice Particles in Ancient China
3(3)
A Brief Summary of the Following Sections
6(1)
Mathematical Descriptions of Ice Particle Size and Shape
7(36)
Size Distribution versus Size-Shape Distributions
7(2)
Mathematical Expression Describing the Two-Dimensional Shapes of Hexagonal Ice Crystals
9(2)
Approximating an Exact Hexagonal Plate
11(2)
Two-Dimensional Characterization of an Ensemble of Planar Hexagonal Ice Crystals
13(5)
Mathematical Expressions Describing the Three-Dimensional Shapes of Ice Crystals
18(12)
Mathematical Expressions Describing Conical Hydrometeors
30(13)
Hydrodynamics of Ice Particles
43(66)
Fall Attitude of Ice Particles
43(1)
Review of Previous Studies
44(1)
The Physics and Mathematics of Unsteady Flow Fields around Nonspherical Ice Particles
45(4)
The Numerical Scheme
49(4)
Results and Discussion
53(56)
Vapor Diffusion, Ventilation, and Collisional Efficiencies of Ice Crystals
109(43)
Introduction
109(1)
Vapor Diffusion Fields around a Stationary Columnar Ice Crystal
110(14)
Ventilation Coefficients for Falling Ice Crystals
124(13)
Collision Efficiencies of Ice Crystals Collecting Supercooled Droplets
137(15)
Scavenging and Transportation of Aerosol Particles by Ice Crystals in Clouds
152(45)
Importance of Aerosol Particles in the Atmosphere
152(1)
Physical Mechanisms of Precipitation Scavenging
153(2)
The Theoretical Problem of Ice Scavenging of Aerosol Particles
155(1)
Physics and Mathematics of the Models
156(8)
Efficiencies of Ice Plates Collecting Aerosol Particles
164(8)
Efficiencies of Columnar Ice Crystals Collecting Aerosol Particles
172(6)
Comparison of Collection Efficiency of Aerosol Particles by Individual Water Droplets, Ice Plates, and Ice Columns
178(10)
Experimental Verification of Collection Efficiencies
188(9)
Evolution of Ice Crystals in the Development of Cirrus Clouds
197(62)
Cirrus Clouds, Radiation, and Climate
197(2)
Physics of the Model
199(12)
Design of the Present Simulation Study
211(7)
Numerics of the Model
218(1)
Results and Discussion
219(27)
Appendix A. Area of an Axial Cross Section
246(2)
Appendix B. Calculation of Volume
248(1)
Appendix C. Closed-Form Expression of the Conical Volume
249(3)
References
252(7)
Mapping Spatial Variability of the Frequency-Magnitude Distribution of Earthquakes
Stefan Wiemer
Max Wyss
Introduction
259(2)
Data Requirements
261(8)
Estimating the Magnitude of Completeness
261(3)
Tradeoff between Spatial Resolution and Significance
264(1)
Maximizing the Number of Events
265(1)
Mapping Minimum Magnitude of Completeness
265(1)
Homogeneity of Reporting with Time
266(1)
Contamination by Explosions
267(1)
Magnitude Scales
267(2)
Methods
269(2)
Mapping the Seismicity
269(1)
Computing the b-Value and Its Uncertainty
269(2)
Case Studies of Mapping the b-Value in Various Tectonic Regimes
271(13)
Volcanoes and Geothermal Fields
271(2)
Mapping Asperities
273(6)
Mapping Temporal Changes of Earthquake Probability
279(1)
Changes of b with Depth in California
280(1)
Mapping b in Subducting Slabs
281(1)
Variations of b in Aftershock Sequences
281(1)
Implications for Aftershock Hazard
282(1)
Spatial Variations of b on Regional to Global Scales
283(1)
Changes of b-Values as a Function of Time
284(2)
Precursory Changes of b-Values before Main Shocks
285(1)
Fractal Dimension and b-Value
286(1)
The Physical Processes Perturbing b-Values
287(1)
Common Problems and Complications
288(3)
Catalog Heterogeneity as a Function of Time
288(1)
The Lack of a Unique Physical Interpretation of Anomalies
288(1)
Selective Hypocenter Location Errors as a Function of Magnitude
289(1)
Magnitude Scales Can Differ
289(1)
The Methods Can Only Be Applied to Seismically Active Volumes
289(1)
Bimodel Distributions of Magnitudes
290(1)
New Hypotheses and Preliminary Conclusions
291(2)
Hypothesis I: Active Magma Chambers in Seismogenic Crust May Be Mapped by an Excess of Small Earthquakes, Which Can Be Measured by Anomalously Large b-Values
291(1)
Hypothesis II: Asperities May Be Mapped by Maxima in Local Earthquake Probability (Minima in Local Recurrence Time)
291(1)
Hypothesis III: The Permanent Changes in the Probability for Earthquakes Caused by Major and Large Shocks in Their Vicinity Can Be Estimated from the Changes in Local Recurrence Time, Calculated from Changes in a- and b-Values
292(1)
Hypothesis IV: Phase Transitions, and Thus the Deep Source of Magma for Subduction Volcanism, May Be Mapped by Anomalously High b-Values
293(1)
Hypothesis V: The b-Values in Aftershock Sequences Are Heterogeneous, Suggesting That the Probability of a Major Aftershock Varies in Space
293(1)
Outlook and Future Work
293(10)
Appendix A. Frequently Asked Questions
294(1)
Should One Use Samples with Constant Numbers Rather Than with Constant Radius?
294(1)
Why Do We Map b-Values and Not Mean Magnitude?
295(1)
Should the Catalog Be Declustered?
295(1)
What Is the Influence of Location Errors?
296(1)
What Software Do You Use?
296(1)
Acknowledgments
296(1)
References
296(7)
Index 303


Renata Dmowska works in the School of Engineering and Applied Sciences at Harvard University in Cambridge, MA, USA. Barry Saltzman, 1932-2001, was professor of geology and geophysics at Yale University and a pioneer in the theory of weather and climate, in which he made several profound and lasting contributions to knowledge of the atmosphere and climate. Saltzman developed a series of models and theories of how ice sheets, atmospheric winds, ocean currents, carbon dioxide concentration, and other factors work together, causing the climate to oscillate in a 100,000-year cycle. For this and other scientific contributions, he received the 1998 Carl Gustaf Rossby Research Medal, the highest award from the American Meteorological Society. Saltzman was a fellow of the American Meteorological Society and the American Association for the Advancement of Science and an honorary member of the Academy of Science of Lisbon. His work in 1962 on thermal convection led to the discovery of chaos theory and the famous "Saltzman-Lorenz attractor."