Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advances in High-Order Predictive Modeling: Methodologies and Illustrative Problems

(University of South Carolina)
  • Formāts: 302 pages
  • Sērija : Advances in Applied Mathematics
  • Izdošanas datums: 11-Dec-2024
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040193228
  • Formāts - EPUB+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 302 pages
  • Sērija : Advances in Applied Mathematics
  • Izdošanas datums: 11-Dec-2024
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040193228

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Continuing the author’s previous work on modeling, this book presents the most recent advances in high-order predictive modeling. The author begins with the mathematical framework of the 2nd-BERRU-PM methodology, an acronym that designates the “second-order best-estimate with reduced uncertainties (2nd-BERRU) predictive modeling (PM).” The 2nd-BERRU-PM methodology is fundamentally anchored in physics-based principles stemming from thermodynamics (maximum entropy principle) and information theory, being formulated in the most inclusive possible phase-space, namely the combined phase-space of computed and measured parameters and responses.

The 2nd-BERRU-PM methodology provides second-order output (means and variances) but can incorporate, as input, arbitrarily high-order sensitivities of responses with respect to model parameters, as well as arbitrarily high-order moments of the initial distribution of uncertain model parameters, in order to predict best-estimate mean values for the model responses (i.e., results of interest) and calibrated model parameters, along with reduced predicted variances and covariances for these predicted responses and parameters.



Continuing the author’s previous work on modeling, this book presents the most recent advances in high-order predictive modeling.

CHAPTER 1: 2nd-BERRU-PM: Second-Order Maximum Entropy Predictive
Modeling Methodology for Reducing Uncertainties in Predicted Model Responses
and Parameters

1.1. Introduction

1.2. Generic Mathematical Modeling of a Physical System

1.3. Construction of the Minimally Discrepant Maximum Entropy Distribution

1.4. Construction of the Second-Order Minimally Discrepant Maximum Entropy
Distribution of Experimentally Measured Responses and Parameters

1.5. 2nd-BERRU-PMD: Second Order MaxEnt Predictive Modeling Methodology with
Deterministically Included Computed Responses

1.6. 2nd-BERRU-PMP: Second-Order MaxEnt Predictive Modeling Methodology with
Probabilistically Included Computed Responses

1.6.1. Second-Order MaxEnt Probabilistic Representation of the Computational
Model

1.6.2. General Case 2nd-BERRU-PMP: Inclusion of Additional External
Measurements for Both Responses and Parameters

1.6.3. Practical Case 2nd-BERRU-PMP: Inclusion of Response Measurements

1.7. Inter-Comparison: 2nd-BERRU-PMP vs. 2nd-BERRU-PMD

1.7.1. Inter-Comparison: Best-Estimate Predicted Mean Values for Responses

1.7.2. Inter-Comparison: Best-Estimate Predicted Mean Values for Parameters


1.7.3. Inter-Comparison: Best-Estimate Predicted Response Covariances

1.7.4. Inter-Comparison: Best-Estimate Predicted Parameter Covariances

1.7.5. Inter-Comparison: Best-Estimate Predicted Correlations Between
Parameters and Responses

1.8. Review of Principles Underlying the Data Adjustment and Data
Assimilation Procedures

1.8.1. Principles Underlying the Data Adjustment Procedure

1.8.2. Principles Underlying the Data Assimilation Procedure

1.9. Discussion and Conclusions

CHAPTER 2: Application of the 2nd-BERRU-PM Methodology to the PERP Reactor
Physics Benchmark

2.1. Introduction

2.2. Mathematical Modeling of the OECD/NEA Polyethylene-Reflected Plutonium
Metal Sphere (PERP) Reactor Physics Benchmark

2.3: Mean and Variance of the PERP Benchmarks Computed Leakage Response

2.3.1. High precision parameters; uniform relative standard deviations

2.3.2. Typical precision parameters; uniform relative standard deviations


2.3.3. Low precision parameters; uniform relative standard deviations

2.4: Illustrative Application of the 2nd-BERRU-PM Methodology to the PERP
Benchmark: Mathematical Expressions for the Best Estimate Predicted Mean and
Variance for the PERP Leakage Response

2.4.1. Best-Estimate Predicted Mean Value, , for the PERP Leakage Response

2.4.2. Best-Estimate Predicted Standard Deviation for PERP Leakage Response

2.5: Typical-Precision Consistent Measured Response (neutrons/sec; )

2.5.1. High-precision (3% relative standard deviations) parameters

2.5.2: Typical precision (5% relative standard deviations) parameters

2.5.3. Low precision (10% relative standard deviations) parameters

2.6: Low-Precision Consistent Measured Response (neutrons/sec; ); High
Precision Parameters (relative SD=3%)

2.7: Typical-Precision Inconsistent Measured Response ( neutrons/sec;

)

2.7.1. High-precision (2% relative standard deviations) parameters

2.7.2. Typical-precision (5% relative standard deviations) parameters

2.7.3. Low-precision (10% relative standard deviations) parameters

2.8: High-Precision Apparently Inconsistent Measured Response ( neutrons/sec;
) and High Precision Parameters (SD=3%)

2.8.1. Including Only Contributions from the 1st -Order Sensitivities of the
Leakage Response to the Total Cross Sections

2.8.2. Including Contributions from the 1st + 2nd -Order Sensitivities of the
Leakage Response to the Total Cross Sections

2.8.3. Including Contributions from the 1st + 2nd + 3rd-Order Sensitivities
of the Leakage Response to the Total Cross Sections

2.8.4. Including Contributions from the 1st + 2nd + 3rd + 4th -Order
Sensitivities of the Leakage Response to the Total Cross Sections

2.9: High-Precision Possibly Inconsistent Measured Response ( neutrons/sec; )
and Low Precision Parameters (SD=10%)

2.9.1. Including Only Contributions from the 1st -Order Sensitivities of the
Leakage Response to the Total Cross Sections

2.9.2. Including Contributions from the 1st + 2nd -Order Sensitivities of the
Leakage Response to the Total Cross Sections

2.10: Low-Precision Apparently Inconsistent Measured Response ( neutrons/sec;
); Typical Precision Parameters (SD=5%)

2.10.1. Including Only Contributions from the 1st -Order Sensitivities of the
Leakage Response to All Important Parameters

2.10.2. Including Contributions from the 1st + 2nd -Order Sensitivities of
the Leakage Response to All Important Parameters

2.10.3. Including Contributions from the 1st + 2nd + 3rd-Order Sensitivities
of the Leakage Response to the Total Cross Sections

2.10.4. Including Contributions from the 1st + 2nd + 3rd + 4th -Order
Sensitivities of the Leakage Response to the Total Cross Sections

2.11: Measured Response Value Coincides with Nominally Computed Response
Value

2.12. Concluding Remarks

CHAPTER 3: A Novel Generic Fourth-Order Moment-Constrained Maximum Entropy
Distribution

3.1. Introduction

3.2. Construction of the Fourth-Order Moment-Constrained Maximum Entropy
(MaxEnt) Representation of Uncertain Multivariate Quantities

3.3. Concluding Remarks

Appendix 3.A. Auxiliary Computations for Constructing the Moment-Constrained
Fourth-Order MaxEnt Distribution

Appendix 3.B. Approximations Inherent to the Fourth-Order Maximum Entropy
Distribution

CHAPTER 4: 4th-BERRU-PM: Fourth-Order Maxent Predictive Modeling Methodology
for Combining Measurements with Computations to Obtain Best-Estimate Results
with Reduced Predicted Uncertainties

4.1. Introduction

4.2. Construction of the Moments-Constrained Fourth-Order MaxEnt Distribution
of the Computational Model Parameters and Responses

4.3. Mathematical Framework of the 4th-BERRU-PM Methodology for Obtaining
Best Estimate Results with reduced Uncertainties

4.3.1. Best-Estimate Fourth-Order Expression of the Vector of Mean Values of
the Predicted Responses

4.3.2. Best-Estimate Fourth-Order Expression of the Vector of Mean Values of
the Predicted Calibrated Model Parameters

4.3.3. Best-Estimate Fourth-Order Expression of the Covariance Matrix of the
Predicted Responses

4.3.4. Best-Estimate Fourth-Order Expression of the Covariance Matrix of the
Calibrated Model Parameters

4.3.5. Best-Estimate Fourth-Order Expression of the Correlation Matrix of the
Predicted Responses and Calibrated Model Parameters

4.3.6. Best-Estimate Fourth-Order Expression of the Triple Correlations among
Predicted Responses and Calibrated Model Parameters

4.3.7. Best-Estimate Fourth-Order Expression of the Quadruple Correlations
among Predicted Responses and Calibrated Model Parameters

4.3.8. Indicator of Consistency among Parameters and Responses

4.4. Conclusions

Appendix 4.A. Auxiliary Computations for Constructing the Fourth-Order
Maximum Entropy Distribution for Model Parameters and Responses

CHAPTER 5 :Application of the 4th-BERRU-PM Methodology to the PERP Reactor
Physics Benchmark

5.1. Introduction

5.2. 4th-BERRU-PM Predicted Best-Estimate Posterior Mean and Variance for the
PERP Leakage Response

5.2.1. Low Precision (Standard Deviation=10%) Measurement of the Leakage
Response

5.2.1.a. High precision parameters (relative standard deviations )

5.2.1.b. Typical precision parameters (relative standard deviations )

5.2.1.c. Low precision parameters (standard deviations )

5.2.2. Typical Precision (Standard Deviation=5%) Measurement of the Leakage
Response

5.2.2.a. High precision parameters (relative standard deviations )

5.2.2.b. Typical precision parameters (relative standard deviations )

5.3. 4th-BERRU-PM Best-Estimate Posterior Mean Values of Calibrated Model
Parameters

5.3.1. High precision parameters (relative standard deviations )

5.3.2. Typical precision parameters (relative standard deviations )

5.4. 4th-BERRU-PM Best-Estimate Posterior Correlations Between Predicted
Responses and Calibrated Model Parameters

5.4.1. High precision parameters (relative standard deviations )

5.4.2. Typical precision parameters (relative standard deviations )

5.5. 4th-BERRU-PM Best-Estimate Posterior Covariance Matrix of Calibrated
Model Parameters

5.5.1. High precision parameters (relative standard deviations )

5.5.2. Typical precision parameters (relative standard deviations )

5.5.3. Low precision parameters (relative standard deviations ); low
precision measurement ()

5.6. 4th-BERRU-PM Best-Estimate Posterior Skewness of Predicted Responses and
Calibrated Model Parameters

5.7. 4th-BERRU-PM Best-Estimate Posterior Kurtosis of Predicted Responses and
Calibrated Model Parameters

5.8. Concluding Remarks

CHAPTER 6: Fourth-Order Comprehensive Adjoint Sensitivity Analysis
Methodology: Mathematical Framework

6.1. Introduction

6.2. First-Order Comprehensive Adjoint Sensitivity Analysis Methodology

6.3. Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology

6.4. Third-Order Comprehensive Adjoint Sensitivity Analysis Methodology

6.5. Fourth-Order Comprehensive Adjoint Sensitivity Analysis Methodology

6.6. Concluding Remarks

CHAPTER 7: Polyethylene Reflected Plutonium (PERP) Reactor Physics Benchmark:
Sensitivities of the Neutron Leakage Response to Total Cross Sections

7.1. Introduction

7.2. Computation of First-Order Sensitivities

7.3. Computation of Second-Order Sensitivities

7.4. Computation of Third-Order Sensitivities

7.5. Computation of Fourth-Order Sensitivities

7.6 Computational Considerations

7.7. Concluding Remarks
Dan Gabriel Cacuci is a Distinguished Professor Emeritus in the Department of Mechanical Engineering at the University of South Carolina and the Karlsruhe Institute of Technology, Germany. He received his PhD in applied physics, mechanical and nuclear engineering from Columbia University. He is also the recipient of many awards including four honorary doctorates, the Ernest Orlando Lawrence Memorial award from the U.S. Deptartment of Energy and the Arthur Holly Compton, Eugene P. Wigner and the Glenn Seaborg Awards from the American Nuclear Society. He was named an Inaugural Highly Ranked Scholar by Scholar GPS, being ranked #2 in the world in the field of Uncertainty Analysis, #5 in the world in the field of Sensitivity Analysis, and ranked in the top 0.05% of all scholars worldwide.

This is Dr. Cacucis fifth book for CRC Press. The others include, The Second-Order Adjoint Sensitivity Analysis Methodology (2018); Computational Methods for Data Evaluation and Assimilation with Ionel Michael Navon and Mihaela Ionescu-Bujor (2013); Sensitivity and Uncertainty Analysis, Volume I Applications to Large-Scale Systems (2003) and Volume II (2005) also with Mihaela Ionescu-Bujor and Michael Navon.

.