Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14-17, 2020, Proceedings, Part I

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This two-volume set LNCS 12035 and 12036 constitutes the refereed proceedings of the 42nd European Conference on IR Research, ECIR 2020, held in Lisbon, Portugal, in April 2020.* 





The 55 full papers presented together with 8 reproducibility papers, 46 short papers, 10 demonstration papers, 12 invited CLEF papers, 7 doctoral consortium papers, 4 workshop papers, and 3 tutorials were carefully reviewed and selected from 457 submissions. They were organized in topical sections named:





Part I: deep learning I; entities; evaluation; recommendation; information extraction; deep learning II; retrieval; multimedia; deep learning III; queries; IR general; question answering, prediction, and bias; and deep learning IV.





Part II: reproducibility papers; short papers; demonstration papers; CLEF organizers lab track; doctoral consortium papers; workshops; and tutorials.

*Due to the COVID-19 pandemic, this conference was held virtually.
Deep Learning I.- Seed-guided Deep Document Clustering.- Improving
Knowledge Graph Embedding using Locally and Globally Attentive Relation
Paths.- ReadNet: A Hierarchical Transformer Framework for Web Article
Readability Analysis.- Variational Recurrent Sequence-to-Sequence Retrieval
for Stepwise Illustration.- A Hierarchical Model for Data-to-Text
Generation.- Entities.- Context-guided Learning to Rank Entities.-
Graph-Embedding Empowered Entity Retrieval.- Learning Advanced Similarities
and Training Features for Toponym Interlinking.- Patch-based Identification
of Lexical Semantic Relations.- Joint Word and Entity Embeddings for Entity
Retrieval from a Knowledge Graph.- Evaluation.- Evaluating the Effectiveness
of the Standard Insights Extraction Pipeline for Bantu Languages.-
Recommendation.- Axiomatic Analysis of Contact Recommendation Methods in
Social Networks: an IR perspective.- Recommending Music Curators: A Neural
Style-Aware Approach.- Joint Geographical and Temporal Modeling based on
Matrix Factorization for Point-of-Interest Recommendation.- Semantic
Modelling of Citation Contexts for Context-aware Citation Recommendation.-
TransRev: Modeling Reviews as Translations from Users to Items.- Information
Extraction.- Domain-independent Extraction of Scientific Concepts from
Research Articles.- Leveraging Schema Labels to Enhance Dataset Search.-
Moving from formal towards coherent concept analysis: why, when and how.-
Beyond Modelling: Understanding Mental Disorders in Online Social Media.-
Deep Learning II.- Learning based Methods for Code Runtime Complexity
Prediction.- Inductive Document Network Embedding with Topic-Word Attention.-
Multi-components system for automatic Arabic diacritization.- A Mixed
Semantic Features Model for Chinese NER with Characters and Words.-
VGCN-BERT: Augmenting BERT with Graph Embedding for Text Classification.-
Retrieval.- A Computational Approach for Objectively Derived Systematic
Review Search Strategies.- You Can Teach an Old Dog New Tricks: Rank Fusion
applied to Coordination Level Matching for Ranking in Systematic Reviews.-
Counterfactual Online Learning to Rank.- A Framework for Argument Retrieval:
Ranking Argument Clusters by Frequency and Specificity.- Relevance Ranking
based on Query-Aware Context Analysis.- Multimedia.- Multimodal Entity
Linking for Tweets.- MEMIS: Multimodal Emergency Management Information
System.- Interactive Learning for Multimedia at Large.- Visual Re-ranking via
Adaptive Collaborative Hypergraph Learning for Image Retrieval.- Motion
Words: A Text-like Representation of 3D Skeleton Sequences.- Deep Learning
III.- Reinforced Rewards Framework for Text Style Transfer.- Recognizing
Semantic Relations: Attention-Based Transformers vs. Recurrent Models.- Early
detection of rumours on Twitter via stance transfer learning.- Learning to
Rank Images with Cross-Modal Graph Convolutions.- Diagnosing BERT with
RetrievalHeuristics.- Queries.- Generation of Synthetic Query Auto Completion
Logs.- What Can Task Teach Us About Query Reformulations?.- A Regularised
Intent Model for Discovering Multiple Intents in E-Commerce Tail Queries.-
Utilising Information Foraging Theory for User Interaction with Image Query
Auto-Completion.- Using Image Captions and Multitask Learning for
Recommending Query Reformulations.- IR general.- Curriculum Learning
Strategies for IR: An Empirical Study on Conversation Response Ranking.-
Accelerating Substructure Similarity Search for Formula Retrieval.-
Quantum-like Structure in Multidimensional Relevance Judgements.- Question
Answering, Prediction, and Bias.- Temporal Latent Space Modeling for
Community Prediction.- KvGR: A Graph-Based Interface for Explorative
Sequential Question Answering on Heterogeneous Information Sources.-
Answering Event-Related Questions over Long-term News Article Archives.- bias
goggles - Graph-based Computation of the Bias of Web Domains through the Eyes
of Users.- Deep Learning IV.- Biconditional Generative Adversarial Networks
for Multiview Learning with Missing Views.- Semantic Path-Based Learning for
Review Volume Prediction.- An Attention Model of Customer Expectation to
Improve Review Helpfulness Prediction.