Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advances in Knowledge Discovery and Data Mining: 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May 11-14, 2020, Proceedings, Part II

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The two-volume set LNAI 12084 and 12085 constitutes the thoroughly refereed proceedings of the 24th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2020, which was due to be held in Singapore, in May 2020. The conference was held virtually due to the COVID-19 pandemic.





The 135 full papers presented were carefully reviewed and selected from 628 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, visualization, decision-making systems, and the emerging applications. They are organized in the following topical sections: recommender systems; classification; clustering; mining social networks; representation learning and embedding; mining behavioral data; deep learning; feature extraction and selection; human, domain, organizational and social factors in data mining; mining sequential data; mining imbalanced data; association; privacy and security; supervised learning; novel algorithms; mining multi-media/multi-dimensional data; application; mining graph and network data; anomaly detection and analytics; mining spatial, temporal, unstructured and semi-structured data; sentiment analysis; statistical/graphical model; multi-source/distributed/parallel/cloud computing.
Mining Sequential Data.- Mining Imbalanced Data.- Association.- Privacy and Security.- Supervised Learning.- Novel Algorithms.- Mining Multi-Media/Multi-Dimensional Data.- Application.- Mining Graph and Network Data.- Anomaly Detection and Analytics.- Mining Spatial, Temporal, Unstructured and Semi-Structured Data.- Sentiment Analysis.- Statistical/Graphical Model.- Multi-Source/Distributed/Parallel/Cloud Computing.