Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advances in Knowledge Discovery and Data Mining: 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11-14, 2021, Proceedings, Part I

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 12712
  • Izdošanas datums: 08-May-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030757625
  • Formāts - EPUB+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 12712
  • Izdošanas datums: 08-May-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030757625

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The 3-volume set LNAI 12712-12714 constitutes the proceedings of the 25th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2021, which was held during May 11-14, 2021.The 157 papers included in the proceedings were carefully reviewed and selected from a total of 628 submissions. They were organized in topical sections as follows:





Part I: Applications of knowledge discovery and data mining of specialized data;





Part II: Classical data mining; data mining theory and principles; recommender systems; and text analytics;





Part III: Representation learning and embedding, and learning from data.
Applications of Knowledge Discovery.- Fuzzy World:A Tool Training Agent
from Concept Cognitive to Logic Inference.- Collaborative Reinforcement
Learning Framework to Model Evolution of Cooperation in Sequential Social
Dilemmas.- SIGTRAN: Signature Vectors for Detecting Illicit Activities in
Blockchain Transaction Networks.- VOA*: Fast Angle-Based Outlier Detection
Over High-Dimensional Data Streams.- Learning Probabilistic Latent Structure
for Outlier Detection from Multi-View Data.- GLAD-PAW: Graph-based Log
Anomaly Detection by Position Aware Weighted Graph Attention Network.-
CubeFlow: Money Laundering Detection with Coupled Tensors.- Unsupervised
Boosting-based Autoencoder Ensembles for Outlier Detection.- Unsupervised
Domain Adaptation for 3D Medical Image with High Efficiency.- A Hierarchical
Structure-Aware Embedding Method for Predicting Phenotype-Gene Associations.-
Autonomous Vehicle Path Prediction using Conditional Variational Autoencoder
Networks.- Heterogeneous Graph Attention Network for Small and Medium-sized
Enterprises Bankruptcy Prediction.- Algorithm Selection as Superset Learning:
Constructing Algorithm Selectors from Imprecise Performance Data.- Sim2Real
for Metagenomes: Accelerating Animal Diagnostics with Adversarial
Co-Training.- Attack Is the Best Defense: A Multi-Mode Poisoning PUF against
Machine Learning Attacks.- Combining exogenous and endogenous signals with a
semi-supervised co-attention network for early detection of COVID-19 fake
tweets.- TLife-LSTM: Forecasting Future COVID-19 Progression with Topological
Signatures of Atmospheric Conditions.- Lifelong Learning based Disease
Diagnosis on Clinical Notes.- GrabQC: Graph based Query Contextualization for
automated ICD coding.- Deep Gaussian Mixture Model on Multiple Interpretable
Features of Fetal Heart Rate for Pregnancy Wellness.- Adverse Drug Events
Detection, Extraction and Normalization from Online Comments of Chinese
Patent Medicines.- Adaptive Graph Co-Attention Networks for Traffic
Forecasting.- Dual-Stage Bayesian Sequence to Sequence Embeddings for Energy
Demand Forecasting.- AA-LSTM: An Adversarial Autoencoder Joint Model for
Prediction of Equipment Remaining Useful Life.- Data Mining of Specialized
Data.- Analyzing Topic Transitions in Text-based Social Cascades using
Dual-Network Hawkes Process.- HiPaR: Hierarchical Pattern-Aided Regression.-
Improved Topology Extraction using Discriminative Parameter Mining of Logs.-
Back to Prior Knowledge: Joint Event Causality Extraction via Convolutional
Semantic Infusion.- A k-MCST based Algorithm for Discovering Core-Periphery
Structures in Graphs.- Detecting Sequentially Novel Classes with Stable
Generalization Ability.- Learning-based Dynamic Graph Stream Sketch.-
Discovering Dense Correlated Subgraphs in Dynamic Networks.- Fake News
Detection with Heterogenous Deep Graph Convolutional Network.- Incrementally
Finding the  Vertices Absent from the Maximum Independent Sets.- Neighbours
and Kinsmen: HatefulUsers Detection with Graph Neural Network.- Graph Neural
Networks for Soft Semi-Supervised Learning on Hypergraphs.- A Meta-path based
Graph Convolutional Network with Multi-Scale Semantic Extractions for
Heterogeneous Event Classification.- Noise-Enhanced Unsupervised Link
Prediction.- Weak Supervision Network Embedding for Constrained Graph
Learning.- RAGA: Relation-aware Graph Attention Networks for Global Entity
Alignment               .- Graph Attention Networks with Positional
Embeddings.- Unified Robust Training for Graph Neural Networks against Label
Noise.- Graph InfoClust: Maximizing Coarse-Grain Mutual Information in
Graphs.- A Deep Hybrid Pooling Architecture for Graph Classification with
Hierarchical Attention.- Maximizing Explainability with SF-Lasso and
Selective Inference for Video and Picture Ads. -Reliably Calibrated Isotonic
Regression.- Multiple Instance Learning for Unilateral Data.- An Online
Learning Algorithm for Non-Stationary Imbalanced Data by Extra-Charging
Minority Class.- Locally Linear Support Vector Machines for Imbalanced Data
Classification. - Low-Dimensional Representation Learning from Imbalanced
Data Streams.- PhotoStylist: Altering the Style of Photos based on the
Connotations of Texts.- Gazetteer-Guided Keyphrase Generation from Research
Papers.- Minits-AllOcc: An Efficient Algorithm for Mining Timed Sequential
Patterns.- T^3N: Harnessing Text and Temporal Tree Network for Rumor
Detection on Twitter.- AngryBERT: Joint Learning Target and Emotion for Hate
Speech Detection.- SCARLET: Explainable Attention based Graph Neural Network
for Fake News spreader prediction.- Content matters: A GNN-based Model
Combined with Text Semantics for Social Network Cascade Prediction.-
TERMCast: Temporal Relation Modeling for Effective Urban Flow Forecasting.-
Traffic Flow Driven Spatio-Temporal Graph Convolutional Network for
Ride-hailing Demand Forecasting.- A Proximity Forest for Multivariate Time
Series Classification.- C²-Guard: A Cross-Correlation Gaining Framework for
Urban Air Quality Prediction.- Simultaneous multiple POI population
patternanalysis system with HDP mixture regression.- Interpretable Feature
Construction for Time Series Extrinsic Regression.- SEPC: Improving Joint
Extraction of Entities and Relations by Strengthening Entity Pairs Connection.