Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advances in Knowledge Discovery and Data Mining: 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11-14, 2021, Proceedings, Part III

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 12714
  • Izdošanas datums: 07-May-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030757687
  • Formāts - EPUB+DRM
  • Cena: 88,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 12714
  • Izdošanas datums: 07-May-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030757687

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The 3-volume set LNAI 12712-12714 constitutes the proceedings of the 25th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2021, which was held during May 11-14, 2021.The 157 papers included in the proceedings were carefully reviewed and selected from a total of 628 submissions. They were organized in topical sections as follows:





Part I: Applications of knowledge discovery and data mining of specialized data;





Part II: Classical data mining; data mining theory and principles; recommender systems; and text analytics;





Part III: Representation learning and embedding, and learning from data.
Representation Learning and Embedding.- Episode Adaptive Embedding Networks for Few-shot Learning.- Universal Representation for Code.- Self-supervised Adaptive Aggregator Learning on Graph.- A Fast Algorithm for Simultaneous Sparse Approximation.- STEPs-RL: Speech-Text Entanglement for Phonetically Sound Representation Learning.- RW-GCN: Training Graph Convolution Networks with biased random walk for Semi-Supervised Classification.- Loss-aware Pattern Inference: A Correction on the Wrongly Claimed Limitations of Embedding Models.- SST-GNN: Simplified Spatio-temporal Traffic forecasting model using Graph Neural Network.- VIKING: Adversarial Attack on Network Embeddings via Supervised Network Poisoning.- Self-supervised Graph Representation Learning with Variational Inference.- Manifold Approximation and Projection by Maximizing Graph Information.- Learning Attention-based Translational Knowledge Graph Embedding via Nonlinear Dynamic Mapping.- Multi-Grained Dependency Graph Neural Network for Chinese Open Information Extraction.- Human-Understandable Decision Making for Visual Recognition.- LightCAKE: A Lightweight Framework for Context-Aware Knowledge Graph Embedding.- Transferring Domain Knowledge with an Adviser in Continuous Tasks.- Inferring Hierarchical Mixture Structures: A Bayesian Nonparametric Approach.- Quality Control for Hierarchical Classification with Incomplete Annotations.- Learning from Data.- Learning Discriminative Features using Multi-label Dual Space.- AutoCluster: Meta-learning Based Ensemble Method for Automated Unsupervised Clustering.- BanditRank: Learning to Rank Using Contextual Bandits.- A compressed and accelerated SegNet for plant leaf disease segmentation: A Differential Evolution based approach.- Meta-Context Transformers for Domain-Specific Response Generation.- A Multi-task Kernel Learning Algorithm for Survival Analysis.- Meta-data Augmentation based Search Strategy through Generative Adversarial Network for AutoML Model Selection.- Tree-Capsule: Tree-Structured Capsule Network for Improving Relation Extraction.- Rule Injection-based Generative Adversarial Imitation Learning for Knowledge Graph Reasoning.- Hierarchical Self Attention Based Autoencoder for Open-Set Human Activity Recognition.- Reinforced Natural Language Inference for Distantly Supervised Relation Classification.- SaGCN: Structure-aware Graph Convolution Network for Document-level Relation Extraction.- Addressing the class imbalance problem in medical image segmentation via accelerated Tversky loss function.- Incorporating Relational Knowledge in Explainable Fake News Detection.- Incorporating Syntactic Information into Relation Representations for Enhanced Relation Extraction.