Atjaunināt sīkdatņu piekrišanu

Advances in Metaheuristics Algorithms: Methods and Applications Softcover Reprint of the Original 1st 2018 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 218 pages, height x width: 235x155 mm, weight: 454 g, 13 Illustrations, color; 35 Illustrations, black and white; XIV, 218 p. 48 illus., 13 illus. in color., 1 Paperback / softback
  • Sērija : Studies in Computational Intelligence 775
  • Izdošanas datums: 14-Dec-2018
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030077365
  • ISBN-13: 9783030077365
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 218 pages, height x width: 235x155 mm, weight: 454 g, 13 Illustrations, color; 35 Illustrations, black and white; XIV, 218 p. 48 illus., 13 illus. in color., 1 Paperback / softback
  • Sērija : Studies in Computational Intelligence 775
  • Izdošanas datums: 14-Dec-2018
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030077365
  • ISBN-13: 9783030077365
Citas grāmatas par šo tēmu:
This book explores new alternative metaheuristic developments that have proved to be effective in their application to several complex problems. Though most of the new metaheuristic algorithms considered offer promising results, they are nevertheless still in their infancy. To grow and attain their full potential, new metaheuristic methods must be applied in a great variety of problems and contexts, so that they not only perform well in their reported sets of optimization problems, but also in new complex formulations. The only way to accomplish this is to disseminate these methods in various technical areas as optimization tools. In general, once a scientist, engineer or practitioner recognizes a problem as a particular instance of a more generic class, he/she can select one of several metaheuristic algorithms that guarantee an expected optimization performance. Unfortunately, the set of options are concentrated on algorithms whose popularity and high proliferation outstrip those of the new developments. This structure is important, because the authors recognize this methodology as the best way to help researchers, lecturers, engineers and practitioners solve their own optimization problems.
Introduction.- The metaheuristic algorithm of the social-spider.- Calibration of Fractional Fuzzy Controllers by using the Social-spider method.- The metaheuristic algorithm of the Locust-search.- Identification of fractional chaotic systems by using the Locust Search Algorithm.- The States of Matter Search (SMS).- Multimodal States of Matter search.- Metaheuristic algorithms based on Fuzzy Logic.