Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advances on Methodological and Applied Aspects of Probability and Statistics

Edited by (McMaster University, Hamilton, Ontario, Canada)
  • Formāts: 664 pages
  • Izdošanas datums: 30-Apr-2019
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781135465162
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 57,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 664 pages
  • Izdošanas datums: 30-Apr-2019
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781135465162
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This is one of two volumes that sets forth invited papers presented at the International Indian Statistical Association Conference. This volume emphasizes advancements in methodology and applications of probability and statistics. The chapters, representing the ideas of vanguard researchers on the topic, present several different subspecialties, including applied probability, models and applications, estimation and testing, robust inference, regression and design and sample size methodology. The text also fully describes the applications of these new ideas to industry, ecology, biology, health, economics and management. Researchers and graduate students in mathematical analysis, as well as probability and statistics professionals in industry, will learn much from this volume.
Preface xxi
List of Contributors
xxiii
List of Tables
xxix
List of Figures
xxxv
Part I Applied Probability
From Dams to Telecommunication - A Survey of Basic Models
3(10)
N. U. Prabhu
Introduction
3(1)
Moran's Model for the Finite Dam
4(2)
A Continuous Time Model for the Dam
6(2)
A Model for Data Communication Systems
8(5)
References
11(2)
Maximum Likelihood Estimation in Queueing Systems
13(34)
U. Narayan Bhat
Ishwar V. Basawa
Introduction
13(2)
M.L.E. in Markovian Systems
15(1)
M.L.E. in Non-Markovian Systems
16(2)
M.L.R. for Single Server Queues Using Waiting Time Data
18(1)
M.L.E. Using System Time
19(2)
M.L.E. in M/G/1 Using Queue Length Data
21(3)
M.L.E. in GI/M/1 Using Queue Length Data
24(2)
Some Observations
26(6)
References
27(5)
Numerical Evaluation of State Probabilities at Different Epochs in Multiserver GI/Geom/m Queue
M. L. Chaudhry
U. C. Gupta
Introduction
32(1)
Model and Solution: GI/Geom/m (EAS)
33(6)
Evaluation of {Qn}∞ from {Qn}∞
37(2)
Outside observer's distribution
39(1)
GI/Geom/m (LAS-DA)
39(4)
Evaluation of {Pn}∞ from {Pn}∞
42(1)
Outside observer's distribution
42(1)
Numerical Results
43(4)
References
46(1)
Busy Period Analysis of GIbIM/1/N Queues - Lattice Path Approach
47(40)
Kanwar Sen
Manju Agarwal
Introduction
47(2)
The GIb/M/1/N Model
49(1)
Lattice Path Approach
50(1)
Discretized Cb2/M/1/N Model
51(9)
Transient Probabilities
51(1)
Counting of Lattice Paths
52(1)
Notations
53(7)
Busy Period Probability for the Discretized Cb2/M/1/N Model
60(3)
Continuous Cb2/M/1/N Model
63(1)
Particular Cases
64(1)
Numerical Computations and Comments
65(22)
References
67(20)
Part II Models and Applications
Measures for Distributional Classification and Model Selection
87(14)
Govind S. Mudholkar
Rajesehwari Natarajan
Introduction
87(1)
Current Measures for Distributional Morphology
88(3)
(ξ1,ξ2) System
91(2)
Asymptotic Distributions of J1, J2
93(2)
Miscellaneous Remarks
95(6)
References
97(4)
Modeling with a Bivariate Geometric Distribution
101(12)
Sunil K. Dhar
Introduction
101(1)
Interpretation of BVG Model Assumptions
102(2)
The Model Under the Environmental Effect
104(1)
Data Analysis with BVG Model
105(8)
References
109(4)
Part III Estimation and Testing
Small Area Estimation: Updates With Appraisal
113(28)
J. N. K. RAO
Introduction
113(2)
Small Area Models
115(5)
Area Level Models
115(3)
Unit Level Models
118(2)
Model-Based Inference
120(8)
EBLUP Method
121(3)
EB Method
124(1)
HE Method
125(3)
Some Recent Applications
128(13)
Area-level Models
128(3)
Unit Level Models
131(10)
References
Unimodality in Circular Data: A Bayes Test
141(18)
Sanjib Basu
S. Rao Jammalamadaka
Introduction
141(2)
Existing Literature
143(1)
Mixture of Two Von-Mises Distributions
144(2)
Prior Specification
146(1)
Prior and Posterior Probability of Unimodality
147(1)
The Bayes Factor
148(1)
Application
149(2)
Some Issues
151(8)
References
153(6)
Maximum Likelihood Estimation of the Laplace Parameters Based on Progressive Type-II Censored Samples
159(10)
Rita Aggarwala
N. Balakrishnan
Introduction
159(2)
Examining the Likelihood Function
161(2)
Algorithm To Find Mle's
163(2)
Numerical Example
165(4)
References
166(3)
Estimation of Parameters of the Laplace Distribution Using Ranked Set Sampling Procedures
169(14)
Dinish S. Bhoj
Introduction
169(2)
Estimation of Parameters Based on Three Procedures
171(3)
Ranked Set Sampling
171(1)
Modified Ranked Set Sampling
172(1)
New Ranked Set Sampling
173(1)
Laplace Distribution
174(2)
Comparison of Estimators
176(7)
Joint Estimation of μ and σ
176(1)
Estimation of μ
177(1)
Estimation of σ
177(1)
References
178(5)
Some Results on Order Statistics Arising in Multiple Testing
183(14)
Sanat K. Sarkar
Introduction
183(2)
The Monotonicity of di's
185(2)
Results on Ordered Components of a Random Vector
187(10)
References
191(6)
Part IV Robust Inference
Robust Estimation Via Generalized L-Statistics: Theory, Applications, and Perspectives
197(22)
Robert Serfling
Introduction
197(3)
A Unifying Structure
198(2)
Basic Formulation of GL-Statistics
200(3)
Representation of GL-Statistics as Statistical Functionals
200(2)
A More General Form of Functional
202(1)
The Estimation Error
203(1)
Some Foundational Tools
203(5)
Differentation Methodology
203(1)
The Estimation Error in the U-Empirical Process
204(1)
Extended Glivenko-Cantelli Theory
205(1)
Oscillation Theory, Generalized Order Statistics, and Bahadur Representations
206(1)
Estimation of the Variance of a U-Statistic
207(1)
General Results for U-Statistics
208(2)
Asymptotic Normality and the LIL
208(1)
The SLLN
209(1)
Large Deviation Theory
209(1)
Further Results
210(1)
Some Applications
210(9)
One-Sample Quantile Type Parameters
210(2)
Two-Sample Location and Scale Problems
212(1)
Robust ANOVA
213(1)
Robust Regression
213(1)
Robust Estimation of Exponential Scale Parameter
213(1)
References
214(5)
A Class of Robust Stepwise Tests For Manova
219(22)
Deo Kumar Srivastava
Govind S. Mudholkar
Carol E. Marchetti
Introduction
220(2)
Preliminaries
222(5)
Robust Univariate Tests
222(2)
Combining Independent P-Values
224(1)
Modified Step Down Procedure
225(2)
Robust Stepwise Tests
227(1)
A Monte Carlo Experiment
228(3)
The Study
228(3)
Conclusions
231(10)
References
231(10)
Robust Estimators for the One-Way Variance Components Model
241(22)
Yogendra P. Chaubey
K. Venkateswarlu
Introduction
241(2)
Mixed Linear Models and Estimation of Parameters
243(3)
General Mixed Linear Model
243(1)
Maximum Likelihood and Restricted Maximum Likelihood Estimators
244(1)
Robust Versions of ML and REML Estimators
245(1)
Computation of Estimators for the One Way Model
246(1)
Description of the Simulation Experiment
246(2)
Discussion of the Results
248(1)
Biases of the Estimators of σ2
248(1)
Biases of the Estimators of σ2e
248(1)
MSE's of Estimators of σ2a
248(1)
MSE's of Estimators of σ2e
249(1)
Summary and Conclusions
249(14)
References
249(14)
Part V Regression and Design
Performance of the PTE Based on the Conflicting W, LR and LM Tests in Regression Model
263(20)
Md. Baki Billah
A. K. Md. E. Saleh
Introduction
264(1)
The Tests and Proposed Estimators
265(2)
BIAS, M and Risk of the Estimators
267(2)
Relative Performance of the Estimators
269(4)
Bias Analysis of the Estimators
269(1)
M Analysis of the Estimators
270(1)
Risk Analysis of the Estimators
271(2)
Efficiency Analysis and Recommendations
273(2)
Conclusion
275(8)
References
276(7)
Estimation of Regression and Dispersion Parameters in the Analysis of Proportions
283(22)
Sudhir R. Paul
Introduction
284(1)
Estimation
285(4)
The Extended Beta-Binomial Likelihood
285(1)
The Quasi-Likelihood Method
286(1)
Estimation Using quadratic Estimating Equations
287(2)
Asymptotic Relative Efficiency
289(3)
Examples
292(1)
Discussion
293(12)
References
294(11)
Semiparametric Location-Scale Regression Models For Survival Data
305(20)
Xuewen Lu
R. S. Singh
Introduction
306(1)
Likelihood Function for the Parametric Location-Scale Models
307(1)
Generalized Profile Likelihood
308(2)
Application of Generalized Profile Likelihood to Semiparametric Location-Scale Regression Models
308(1)
Estimation and Large Sample Properties
309(1)
Examples of Semiparametric Location-Scale Regression Models
310(2)
An Example with Censored Survival Data: Primary Biliary Cirrhosis (PBC) Data
312(13)
References
313(1)
Appendix: Computation of the Estimates
314(11)
Analysis of Saturated and Super-Saturated Factorial Designs: A Review
325(24)
Kimberly K. J. Kinateder
Daniel T. Voss
Weizhen Wang
Introduction
325(2)
Background
327(4)
Orthogonality and Saturation
327(2)
Control of Error Rates
329(2)
Orthogonal Saturated Designs
331(9)
Background
331(2)
Simultaneous Stepwise Tests
333(4)
Individual Tests
337(1)
Individual Confidence Intervals
338(1)
Simultaneous Confidence Intervals
338(1)
Adaptive Methods
339(1)
Non-Orthogonal Saturated Designs
340(2)
Individual Confidence Intervals
341(1)
Open Problems
342(1)
Super-Saturated Designs
342(7)
References
343(6)
On Estimating Subject-Treatment Interaction
349(18)
Gary Gadbury
Hari Iyer
Introduction
350(2)
An Estimator of S2D Using Concomitant Information
352(7)
An Illustrative Example
359(1)
Summary/Conclusions
360(7)
References
361(6)
Part VI Sample Size Methodology
Advances in Sample Size Methodology for Binary Data Studies-A Review
367(16)
M. M. Desu
Establishing Therapeutic Equivalence in Parallel Studies
367(7)
Tests under Δ-Formulation (20.2)
369(2)
Tests under Relative Risk Formulation (ψ Formulation)
371(2)
Confidence Bound Method for Δ Formulation
373(1)
Sample Size for Paired Data Studies
374(9)
Testing for Equality of Correlated Proportions
375(2)
Tests for Establishing Equivalence
377(3)
References
380(3)
Robustness of a Sample Size Re-Estimation Procedure in Clinical Trials
383(18)
Z. Govindarajulu
Introduction
383(2)
Formulation of the Problem
385(1)
The Main Results
386(9)
Fixed-Width Confidence Interval Estimation
395(1)
References
396(5)
Part VII Applications to Industry
Implementation of Statistical Methods in Industry
401(12)
Bovas Abraham
Introduction
401(1)
Levels of Statistical Need in Industry
402(1)
Implementation General Issues
402(2)
Implementation Via Training And/Or Consulting
404(1)
Implementation Via Education
405(1)
University-Industry Collaboration
406(1)
University of Waterloo and Industry
406(3)
Concluding Remarks
409(4)
References
410(3)
Sequential Designs Based on Credible Regions
413(12)
Enrique Gonzalez
Josep Ginebra
Introduction
413(2)
Designs for Control Based on H.P.D. Sets
415(2)
An Example of the Use of HPD Designs
417(1)
Designs For R.S.B. Based on C.P. Intervals
418(2)
Concluding Remarks
420(5)
Appendix: Model Used in Section 23.3
421(1)
References
422(3)
Aging with Laplace Order Conserving Survival Under Perfect Repairs
425(16)
Manish C. Bhattacharjee
Sujit K. Basu
Introduction
425(1)
The Class LD
426(3)
Closure Properties
429(5)
Coherent Structures
429(2)
Convolutions
431(2)
Mixtures
433(1)
The Discrete Class GD and Its Dual
434(2)
L and LD Aging with Shocks
436(5)
References
440(1)
Defect Rate Estimation Using Imperfect Zero-Defect Sampling with Rectification
441(24)
Neerja Wadhwa
Introduction
441(2)
Sampling Plan A
443(9)
Model
443(1)
Modification of Greenberg and Stokes Estimators
444(2)
An Empirical Bayes Estimator
446(2)
Comparison of Estimators
448(2)
Example
450(2)
Sampling Plan B
452(2)
Estimators
452(2)
Suggestions for Further Research
454(11)
Appendix A1: Calculation of the Second Term in Unew,2
455(1)
Appendix A2: Analytical Expressions for the Bias and MSE
456(3)
References
459(6)
Statistics in the Real World-What I've Learnt in My First Year (and a Half) in Industry
465(12)
Rekha Agrawal
The GE Environment
465(2)
Six Sigma
467(1)
The Projects That I've Worked on
468(3)
Introduction
468(1)
New Product Launch
469(1)
Reliability Issue with a Supplied Part
469(1)
Constructing a Reliability Database
470(1)
Some Surprises Coming to Industry
471(3)
General Comments
474(3)
References
474(3)
Part VIII Applications to Ecology, Biology and Health
Contemporary Challenges and Recent Advances in Ecological and Environmental Sampling
477(30)
G. P. Patil
C. Taillie
Certain Challenges and Advances in Transect Sampling
477(9)
Deep-Sea Red Crab
478(2)
Bivariate Sighting Functions
480(2)
Guided Transect Sampling
482(4)
Certain Challenges and Advances in Composite Sampling
486(9)
Estimating Prevalence Using Composites
486(5)
Two-Way Compositing
491(1)
Compositing and Stochastic Monotonicity
492(3)
Certain Challenges and Advances in Adaptive Cluster Sampling
495(12)
Adaptive Sampling and GIS
495(4)
Using Covariate-Species Community Dissimilarity to Guide Sampling
499(4)
References
503(4)
The Analysis of Multiple Neural Spike Trains
507(18)
Satish Iyengar
Introduction
507(1)
Physiological Background
508(2)
Methods for Detecting Functional Connections
510(11)
Moment Methods
510(2)
Intensity Function Based Methods
512(1)
Frequency Domain Methods
513(3)
Graphical Methods
516(2)
Parametric Methods
518(3)
Discussion
521(4)
References
521(4)
Some Statistical Issues Involving Multigeneration Cytonuclear Data
525(22)
Susmita Datta
Introduction
526(1)
Neutrality or Selection?
527(11)
Sampling Schemes for Multi-Generation Data
529(1)
An Omnibus Test
530(1)
Application to Gambusia Data
531(1)
Application to Drosophila Melanogaster Data
532(1)
Tests Against a Specific Selection Model
532(6)
Inference for the Selection Coefficients
538(9)
A Multiplicative Fertility Selection Model
539(1)
An Approximate Likelihood
539(2)
Application to Hypotheses Testing
541(1)
References
541(6)
The Performance of Estimation Procedures for Cost-Effectiveness Ratios
547(14)
Joseph C. Gardiner
Alka Indurkhya
Zhehui Luo
Introduction
547(1)
Confidence Intervals for Cer
548(2)
Comparison of Intervals
550(2)
Simulation Studies
552(1)
Results
553(5)
Recommendations
558(3)
References
559(2)
Modeling Time-To-Event Data Using Flowgraph Models
561(14)
Aparna V. Huzurbazar
Introduction
561(2)
Introduction to Flowgraph Modeling
563(3)
Flowgraph Models for Series Systems
563(1)
Flowgraph Models for Parallel Systems
564(1)
Flowgraph Models with Feedback
565(1)
Reliability Application: Hydraulic Pump System
566(2)
Survival Analysis Application: A Feed Forward Model for HIV
568(2)
Conclusion
570(5)
References
571(4)
Part IX Applications to Economics and Management
Information Matrix Tests for the Composed Error frontier Model
575(22)
Anil K. Bera
Naresh C. Mallick
Introduction
575(2)
Information Matrix Tests for Frontier Models
577(7)
The Elements of the IM Test for the Output Model
577(5)
The Elements of the IM Test for the Cost Model
582(2)
Empirical Results
584(5)
Output Model Estimation
584(1)
Moments Test for the Output Model
585(2)
Cost Model Estimation
587(1)
Moments Test for the Cost Model
587(2)
Conclusion
589(8)
Appendix A
590(2)
Appendix B
592(3)
References
595(2)
Generalized Estimating Equations for Panel Data and Managerial Monitoring in Electric Utilities
597(1)
H. D. Vinod
R. R. Geddes
The Introduction and Motivation
597(4)
Glm, Gee & Panel Logit/Probit (Ldv) Models
601(4)
GLM for Panel Data
605(1)
Random Effects Model from Econometrics
606(1)
Derivation of GEE, the Estimator for β and Standard Errors
607(2)
Gee Estimation of Ceo Turnover and Three Hypotheses
609(2)
Description of Data
611(2)
Shareholder and Consumer Wealth Variables for Hypothesis Testing
613(1)
Empirical Results
614(2)
Concluding Remarks
616(1)
References
617


Balakrishnan; N. McMaster University, Ontario, Canada,