Atjaunināt sīkdatņu piekrišanu

Advances in Microstrip and Printed Antennas [Hardback]

Edited by , Edited by
  • Formāts: Hardback, 624 pages, height x width x depth: 242x164x35 mm, weight: 1049 g
  • Sērija : Wiley Series in Microwave and Optical Engineering
  • Izdošanas datums: 02-Jul-1997
  • Izdevniecība: Wiley-Interscience
  • ISBN-10: 0471044210
  • ISBN-13: 9780471044215
  • Hardback
  • Cena: 269,22 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 624 pages, height x width x depth: 242x164x35 mm, weight: 1049 g
  • Sērija : Wiley Series in Microwave and Optical Engineering
  • Izdošanas datums: 02-Jul-1997
  • Izdevniecība: Wiley-Interscience
  • ISBN-10: 0471044210
  • ISBN-13: 9780471044215
Explains recent theoretical and experimental advances in the field, covering conventional antenna topics, new research topics, research results, and future trends. Discusses microstrip antennas and arrays, polarized planar antennas, and tapered slot print antennas, examines the development of CAD formulas and the finite-difference time-domain method of analysis, and explores the potential for high-temperature superconducting materials. Includes design data. For graduate students, researchers, and practicing engineers. Annotation c. by Book News, Inc., Portland, Or.

Lee-Antennas-044210

The latest research results and important topics driving the development of microstrip and printed antennas

Keeping abreast of current research topics and results in a field as dynamic as microstrip and printed antennas is a challenge for graduate students, researchers, and practicing engineers alike-theoretical and experimental advances since 1989 have quickly outdated existing literature on the subject. This invaluable reference provides the latest information on conventional antenna topics, comprehensive accounts of new research topics, updated research results, and summaries of future trends.

Advances in Microstrip and Printed Antennas is a comprehensive, up-to-date presentation of the research that is propelling these antennas into an ever-widening array of applications, including potential uses in radar and communication systems. Featuring contributions by leading researchers and supplemented with extensive illustrations, this book:
* Covers recent advances in probe-fed and aperture-coupled microstrip antennas, microstrip arrays, and dual and circularly polarized planar antennas
* Examines the development of CAD formulas for the rectangular patch
* Explores the potential for multifunction printed antennas, new high-temperature superconducting materials, active microstrip antennas, and tapered slot printed antennas
* Discusses the finite-difference time-domain method of analysis
* Examines competing dielectric resonator antenna technology
* Includes design data and an extensive bibliography
Contributors xiii(4) Preface xvii 1 Probe-Fed Microstrip Antennas 1(70) K. F. Lee W. Chen R. Q. Lee 1.1 Introduction 1(3) 1.2 Full-Wave Analysis of Multilayer Multipatch Microstrip Antennas 4(15) 1.2.1 Introductory Remarks 4(1) 1.2.2 Conventions and Definitions 5(2) 1.2.3 Basic Formulations 7(6) 1.2.4 Greens Functions 13(6) 1.3 Spectral Domain Full-Wave Analysis of Probe-Fed Rectangular Microstrip Antennas 19(16) 1.3.1 Formulation 19(4) 1.3.2 Basis Functions 23(1) 1.3.3 Multiple Feeds and Shorting Pins 24(2) 1.3.4 Attachment Modes 26(9) 1.4 Representative Numerical and Experimental Results 35(28) 1.4.1 Single Patch 36(6) 1.4.2 Single Patch in Multidielectric Media 42(8) 1.4.3 Coplanar Parasitic Subarray 50(3) 1.4.4 Two-Layer Stacked Patches 53(10) 1.5 Rectangular Patch with a U-Shaped Slot 63(5) 1.6 Concluding Remarks 68(1) References 68(3) 2 Aperture-Coupled Multilayer Microstrip Antennas 71(52) K. M. Luk T. M. Au K. F. Tong K. F. Lee 2.1 Introduction 71(2) 2.2 Greens Function Formulation 73(5) 2.2.1 Field Components 74(2) 2.2.2 Boundary Conditions 76(2) 2.3 Galerkins Method 78(3) 2.4 Illustrative Results 81(28) 2.4.1 Microstrip Antenna with an Air Gap 82(1) 2.4.2 Coplanar Microstrip Subarrays 83(10) 2.4.3 Offset Dual-Patch Microstrip Antennas 93(4) 2.4.4 Two-Layer Microstrip Antennas with Stacked Parasitic Patches 97(12) 2.5 Infinite Arrays of Aperture-Coupled Multilayer Microstrip Antennas 109(9) 2.5.1 Skewed Periodic Structure and Floquet Modes 109(4) 2.5.2 Infinite Array of Microstrip Antennas with Air Gaps 113(1) 2.5.3 Infinite Array of Dual-Patch Microstrip Antennas 114(4) 2.6 Conclusions 118(2) Appendix: Fourier Transforms of Expansion and Test Functions 120(1) Acknowledgments 121(1) References 121(2) 3 Microstrip Arrays: Analysis, Design, and Applications 123(40) John Huang David M. Pozar 3.1 Introduction 123(1) 3.2 Analysis Techniques for Microstrip Arrays 124(13) 3.2.1 Review of Microstrip Antenna Analysis Techniques 125(1) 3.2.2 Full-Wave Moment Method Analysis 126(2) 3.2.3 Calculation of Mutual Coupling 128(4) 3.2.4 Infinite Array Analysis 132(2) 3.2.5 The Active Element Pattern 134(1) 3.2.6 Waveguide Simulators 135(2) 3.3 Design Methodology 137(15) 3.3.1 Array Configuration Design 138(5) 3.3.2 Patch Element Design 143(1) 3.3.3 Power Division Transmission Line Design 144(4) 3.3.4 Microstrip Reflectarray Design 148(4) 3.4 Applications 152(7) 3.4.1 Military Applications 152(2) 3.4.2 Space Applications 154(3) 3.4.3 Commercial Applications 157(2) 3.5 Summary and Conclusion 159(1) References 159(4) 4 Dual and Circularly Polarized Microstrip Antennas 163(60) P. S. Hall J. S. Dahele 4.1 Introduction 163(1) 4.2 Polarization in Antenna Systems 164(1) 4.3 Generation of Orthogonal Polarizations 165(2) 4.4 Circularly Polarized Patches 167(16) 4.4.1 Orthogonal Patches 169(1) 4.4.2 Multipoint Feeds 170(7) 4.4.3 Single-Point Feeds 177(6) 4.5 Dual Polarized Patches 183(1) 4.5.1 Triangular Patch with Right- and Left-Hand Circular Polarization 184(1) 4.6 Microstrip Spirals 184(2) 4.6.1 Operation of the Spiral Antenna 185(1) 4.7 Special Substrates and Active Antennas 186(2) 4.8 Dual and Circularly Polarized Arrays 188(29) 4.8.1 Patch Arrays 188(1) 4.8.2 Microstrip Line Arrays 188(2) 4.8.3 Sequentially Rotated Arrays 190(27) 4.9 Conclusions 217(1) References 217(6) 5 Computer-Aided Design of Rectangular Microstrip Antennas 223(50) David R. Jackson Stuart A. Long Jeffery T. Williams Vickie B. Davis 5.1 Introduction 223(1) 5.2 CAD Model for Rectangular Patch Antenna 224(7) 5.3 CAD Formulas for Resonance Frequency 231(3) 5.4 CAD Formulas for the Q Factors 234(8) 5.4.1 Dielectric and Conductor Q Factors 234(1) 5.4.2 Relation Between Surface-Wave and Space-Wave Q Factors 235(2) 5.4.3 Space-Wave Quality Factor 237(5) 5.5 CAD Formula for Bandwidth 242(4) 5.5.1 CAD Formula 243(1) 5.5.2 Results 243(3) 5.6 CAD Formula for Radiation Efficiency 246(2) 5.6.1 CAD Formula 246(1) 5.6.2 Results 247(1) 5.7 CAD Formula for Input Resistance 248(4) 5.8 CAD Formula for Probe Reactance 252(2) 5.9 Results for Input Impedance 254(2) 5.10 Radiation Patterns 256(7) 5.10.1 Infinite Substrate 256(4) 5.10.2 Truncated Substrate 260(3) 5.11 CAD Formula for Directivity 263(2) 5.12 Conclusions 265(1) Appendix A: Derivation of the p Factor 266(3) Appendix B: Radiation Formulas for HED and HMD 269(1) References 270(3) 6 Multifunction Printed Antennas 273(52) J. R. James G. Andrasic 6.1 Introduction 273(1) 6.2 Printed Antenna Design Freedom 274(2) 6.3 Multifunction Antenna Design Opportunities and Recent Advances 276(36) 6.3.1 Choice of Substrate Materials and Their Design Potential 276(10) 6.3.2 Innovative Use of Superstrates 286(8) 6.3.3 Printed Conductor Topology 294(8) 6.3.4 Quest for Feeder Simplicity 302(5) 6.3.5 Conformality 307(1) 6.3.6 Integration of Antennas and Circuits 308(4) 6.4 Possible Future Developments 312(5) 6.4.1 Impact of New Materials 312(3) 6.4.2 The Application Drivers 315(2) 6.5 Conclusions 317(1) References 317(8) 7 Superconducting Microstrip Antennas 325(46) Jeffery T. Williams Jarrett D. Morrow David R. Jackson Stuart A. Long 7.1 Introduction 325(1) 7.2 Basics of Superconductivity 326(12) 7.2.1 General Properties of Superconductors 327(2) 7.2.2 High-Temperature Superconductors 329(4) 7.2.3 Characteristics of High-Temperature Superconductors 333(5) 7.3 HTS Microstrip Transmission Lines and Antennas 338(16) 7.3.1 Superconducting Transmission Lines and Feed Networks 339(8) 7.3.2 Superconducting Microstrip Patch Antennas 347(7) 7.4 Design Considerations 354(2) 7.5 Experimental Results 356(9) 7.6 Summary 365(1) Appendix 365(2) References 367(4) 8 Active Microstrip Antennas 371(72) Julio A. Navarro Kai Chang 8.1 Introduction 371(3) 8.2 The Early History of Integrated Antennas 374(2) 8.3 Diode-Integrated Active Microwave Antennas 376(14) 8.4 Transistor-Integrated Active Microstrip Antennas 390(19) 8.5 Diode Arrays for Spatial Power Combining 409(13) 8.6 Transistor Arrays for Spatial Power Combining 422(6) 8.7 System Applications 428(3) 8.8 Conclusions and Future Trends 431(1) Acknowledgments 432(1) References 432(11) 9 Tapered Slot Antenna 443(72) Richard Q. Lee Rainee N. Simons 9.1 Introduction 443(1) 9.2 Basic Geometries 444(3) 9.3 Design Considerations 447(1) 9.4 Fundamentals 447(6) 9.5 Analytical Methods 453(8) 9.5.1 Analysis of Uniform Slotline by the Spectral Domain Approach 455(4) 9.5.2 Far-Field Computation 459(2) 9.6 Feeding Techniques 461(15) 9.7 Characteristics of TSA 476(22) 9.7.1 Radiation Characteristics 476(11) 9.7.2 Impedance Characteristics 487(7) 9.7.3 Bandwidth Characteristics 494(1) 9.7.4 Field Distributions 495(3) 9.8 Tapered Slot Antenna Arrays 498(4) 9.9 Active Tapered Slot Antenna Array 502(8) 9.10 Conclusion 510(1) References 510(5) 10 Efficient Modeling of Microstrip Antennas Using the Finite-Difference Time-Domain Method 515(38) Siva Chebolu Supriyo Dey Raj Mittra John Svigelj 10.1 Introduction 515(1) 10.2 A Comparison of Various CAD Approaches 516(3) 10.3 The Basic FDTD Algorithm 519(3) 10.4 Efficient FDTD Modeling of Microstrip Antennas 522(12) 10.4.1 Spatial Discretization 522(4) 10.4.2 Source Excitation 526(1) 10.4.3 Phased Array Excitation 526(1) 10.4.4 Extrapolation Techniques 526(4) 10.4.5 Impedance 530(1) 10.4.6 Absorbing Boundaries 531(1) 10.4.7 Radiation Pattern 532(1) 10.4.8 Distributed Computing 533(1) 10.4.9 Dielectric Loss Tangent 534(1) 10.5 Single Patch Modeling 534(4) 10.5.1 Impedance of a Patch Antenna Mounted on a Moderately Thick Substrate 535(1) 10.5.2 Impedance of a Patch Antenna Mounted on a Thick Substrate 536(2) 10.5.3 Effect of a Finite Ground Plane on Impedance and Radiation Pattern 538(1) 10.6 Analysis of a Two-Layer Stacked Patch Antenna 538(5) 10.7 Design of a Compact Broadband Antenna 543(4) 10.8 Conclusions 547(1) References 548(5) 11 Analysis of Dielectric Resonator Antennas 553(40) K. M. Luk K. W. Leung S. M. Shum 11.1 Introduction 553(2) 11.2 Analysis of Aperture-Coupled Hemispherical DR Antenna 555(18) 11.2.1 Problem Formulation 556(1) 11.2.2 Moment Method Solution 557(3) 11.2.3 Derivation of DR Antenna Greens Function G(H)(y)(M)(y) 560(6) 11.2.4 Evaluation of Y(a)(mn) 566(1) 11.2.5 Single-Cavity-Mode Approximation 567(1) 11.2.6 Single-Cavity-Mode Radiation Field of the DR Antenna 568(1) 11.2.7 Results and Discussions 568(5) 11.2.8 Summary 573(1) 11.3 FDTD Analysis of Probe-Fed Cylindrical DR Antenna 573(16) 11.3.1 The FDTD Method 574(2) 11.3.2 Antenna Feed Modeling 576(2) 11.3.3 Absorbing Boundary Condition 578(1) 11.3.4 Input Impedance Calculation 579(1) 11.3.5 Far-Field Calculations 580(2) 11.3.6 Results and Discussions 582(7) 11.3.7 Summary 589(1) References 589(4) Index 593
KAI FONG LEE, PhD, Professor and Chairman of the Department of Electrical Engineering at the University of Missouri-Columbia, is the author of Principles of Antenna Theory. Professor Lee is a Fellow of the IEEE.

WEI CHEN, PhD, is currently an engineer at Cooper Energy Services.