Atjaunināt sīkdatņu piekrišanu

E-grāmata: Advances in Natural Gas: Formation, Processing, and Applications. Volume 4: Natural Gas Dehydration

Edited by (Professor, Department of Chemical Engineering, Shiraz University, Shiraz, Iran), Edited by (Research Associate, Department of Chemical Engineering, Shiraz University, Shiraz, Iran), Edited by (Taylor's University, Malaysia)
  • Formāts: PDF+DRM
  • Izdošanas datums: 05-Mar-2024
  • Izdevniecība: Elsevier - Health Sciences Division
  • Valoda: eng
  • ISBN-13: 9780443192227
  • Formāts - PDF+DRM
  • Cena: 243,26 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 05-Mar-2024
  • Izdevniecība: Elsevier - Health Sciences Division
  • Valoda: eng
  • ISBN-13: 9780443192227

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Advances in Natural Gas: Formation, Processing, and Applications is a comprehensive eight-volume set of books that discusses in detail the theoretical basics and practical methods of various aspects of natural gas from exploration and extraction, to synthesizing, processing and purifying, producing valuable chemicals and energy. The volumes introduce transportation and storage challenges as well as hydrates formation, extraction, and prevention.

Volume 4 titled Natural Gas Dehydration introduces in detail different natural gas dehydration methods. The book covers absorption with different solvents such as glycols, ionic liquids, and DES which is one of the important dehydration techniques, as well as natural gas dehydration with adsorption-based technologies utilizing various materials including zeolites, carbonaceous sorbents, metal oxides, etc. It discusses in detail membrane-based processes with various types (such as hollow-fiber and polymeric membranes) and includes novel technologies for sweetening natural gas by using supersonic technology.

Section I: Natural Gas Dehydration Concepts1. Introduction to natural gas dehydration methods and technologies2. Challenges of wet natural gas3. Natural gas dehydration standards, policies and regulations4. Economic assessments and environmental challenges of natural gas dehydration technologies

Section I: Absorption Techniques for Natural Gas Dehydration5. Glycol absorbents for natural gas dehydration6. Ionic liquids for natural gas dehydration7. Deep eutectic solvents for natural gas dehydration

Section II: Adsorption Techniques for Natural Gas Dehydration8. Swing processes for natural gas dehydration: pressure, thermal, vacuum, electrical and mixed swing processes9. Activated alumina and silica gel adsorbents for natural gas dehydration10. Carbonaceous sorbents for natural gas dehydration11. Zeolite and molecular sieves for natural gas dehydration12. Metal-oxide adsorbents for natural gas dehydration13. Natural gas dehydration using hygroscopic salts: CaCL2 and others

Section III: Membrane Technology for Natural Gas Dehydration14. Hollow-fiber membranes for natural gas dehydration15. Zeolite membranes for natural gas dehydration16. Polymeric membranes for natural gas dehydration

Section IV: Other Technologies for Natural Gas Dehydration17. Direct cooling and compression followed by cooling processes for natural gas dehydration18. Supersonic technology for natural gas dehydration19. Natural gas dehydration in a micro-reactor

Prof. Mohammad Reza Rahimpour is a professor in Chemical Engineering at Shiraz University, Iran. He received his Ph.D. in Chemical Engineering from Shiraz University joint with University of Sydney, Australia 1988. He started his independent career as Assistant Professor in September 1998 at Shiraz University. Prof. M.R. Rahimpour, was a Research Associate at University of California, Davis from 2012 till 2017. During his stay in University of California, he developed different reaction networks and catalytic processes such as thermal and plasma reactors for upgrading of lignin bio-oil to biofuel with collaboration of UCDAVIS. He has been a Chair of Department of Chemical Engineering at Shiraz University from 2005 till 2009 and from 2015 till 2020. Prof. M.R. Rahimpour leads a research group in fuel processing technology focused on the catalytic conversion of fossil fuels such as natural gas, and renewable fuels such as bio-oils derived from lignin to valuable energy sources. He provides young distinguished scholars with perfect educational opportunities in both experimental methods and theoretical tools in developing countries to investigate in-depth research in the various field of chemical engineering including carbon capture, chemical looping, membrane separation, storage and utilization technologies, novel technologies for natural gas conversion and improving the energy efficiency in the production and use of natural gas industries.

Dr. Mohammad Amin Makarem is a research associate at Taylor's University, Malaysia. He former worked at Shiraz University. His research interests are gas separation and purification, nanofluids, microfluidics, catalyst synthesis, reactor design and green energy. In gas separation, his focus is on experimental and theoretical investigation and optimization of pressure swing adsorption process, and in the gas purification field, he is working on novel technologies such as microchannels. Recently, he has investigated methods of synthesizing bio-template nanomaterials and catalysts. Besides, he has collaborated in writing and editing various books and book-chapters for famous publishers such as Elsevier, Springer and Wiley, as well as guest editing journals special issues.

Maryam Meshksar is a research associate at Shiraz University. Her research has focused on gas separation, clean energy, and catalyst synthesis. In gas separation, she is working on membrane separation process, and in the clean energy field, she has worked on different reforming-based processes for syngas production from methane experimentally. She has also synthesized novel catalysts for these processes which are tested in for the first time. Besides, she has reviewed novel technologies like microchannels for energy production. Recently, she has written various book-chapters for famous publishers such as Elsevier, Springer, and Wiley.