Atjaunināt sīkdatņu piekrišanu

Advances in Optimization Algorithms for Multidisciplinary Engineering Applications: From Classical Methods to AI-Enhanced Solutions [Hardback]

Edited by , Edited by , Edited by , Edited by
  • Formāts: Hardback, 806 pages, height x width: 235x155 mm, 233 Illustrations, color; 56 Illustrations, black and white; XI, 806 p. 289 illus., 233 illus. in color., 1 Hardback
  • Sērija : Studies in Computational Intelligence 806
  • Izdošanas datums: 25-Apr-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031784391
  • ISBN-13: 9783031784392
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 154,01 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 181,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 806 pages, height x width: 235x155 mm, 233 Illustrations, color; 56 Illustrations, black and white; XI, 806 p. 289 illus., 233 illus. in color., 1 Hardback
  • Sērija : Studies in Computational Intelligence 806
  • Izdošanas datums: 25-Apr-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031784391
  • ISBN-13: 9783031784392
Citas grāmatas par šo tēmu:
This book is an authoritative compilation of the latest advancements in optimization techniques. This book covers a wide array of methods ranging from classical to metaheuristic to AI-enhanced approaches.





The chapters are meticulously selected and organized in three sectionsmetaheuristics, machine learning and engineering applications. This allows for an in-depth exploration of diverse topics ranging from image processing to feature selection to data clustering, to practical applications like energy optimization, smart grids, healthcare diagnostics, etc. Each chapter delves into the specific algorithms and applications as well as provides ample theoretical insights.





Accordingly, this book is ideally suited for undergraduate and postgraduate students in fields such as science, engineering and computational mathematics. It is also an invaluable resource for courses on artificial intelligence, computational intelligence, etc. Researchers and professionals in evolutionary computation, artificial intelligence and engineering will find the material especially useful for advancing their work and exploring new frontiers in optimization.

Metaheuristics theory and applications.- Machine learning.- Engineering applications.