Atjaunināt sīkdatņu piekrišanu

Advances in Technical Sciences and Architecture: Selected Contributions of CCIA 2024 [Hardback]

  • Formāts: Hardback, 885 pages, height x width: 235x155 mm, 20 Illustrations, black and white; XV, 885 p. 20 illus., 1 Hardback
  • Sērija : Lecture Notes in Networks and Systems 1499
  • Izdošanas datums: 20-Oct-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031961560
  • ISBN-13: 9783031961564
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 296,81 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 349,19 €
  • Ietaupiet 15%
  • Grāmata tiks piegādāta 3-6 nedēļas pēc tās publicēšanas.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 885 pages, height x width: 235x155 mm, 20 Illustrations, black and white; XV, 885 p. 20 illus., 1 Hardback
  • Sērija : Lecture Notes in Networks and Systems 1499
  • Izdošanas datums: 20-Oct-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031961560
  • ISBN-13: 9783031961564
Citas grāmatas par šo tēmu:
This book showcases the latest innovations in architecture and engineering, featuring research and case studies presented at the 21st International Scientific Conference on Engineering and Architecture (CCIA 2024) in Havana, Cuba. It covers a wide range of topics, including control systems, communications, computer technologies, industrial applications, business management, construction advancements, and sustainable energy solutions. Combining theoretical insights and practical studies, this volume offers valuable perspectives for both academics and professionals looking to tackle the challenges of today's rapidly evolving fields.
1. Type A Gelatin Electrospun Scaffolds: comparison between
non-crosslinked and cross.-
2. Effect of gelatine crosslinking over scaffolds
of composite polymers for tissue engineering.-
3. Power Transformer Health
Index Calculation Web page.-
4. Data augmentation strategies for
machine learning modelling of compressive strength of biomedical scaffolds.-
5. Estimation of working temperature in distribution transformers using the
finite element method.