|
1 Introduction: Graphs---Basic Definitions |
|
|
1 | (40) |
|
|
1 | (20) |
|
|
1 | (16) |
|
|
17 | (4) |
|
1.2 Some polynomial invariants for graphs |
|
|
21 | (20) |
|
1.2.1 The Tutte polynomial of a graph |
|
|
22 | (5) |
|
1.2.2 The Ihara zeta function |
|
|
27 | (2) |
|
1.2.3 The Duursma zeta function |
|
|
29 | (5) |
|
1.2.4 Graph theory and mathematical blackjack |
|
|
34 | (7) |
|
|
41 | (56) |
|
|
41 | (1) |
|
|
41 | (12) |
|
2.3 The Moore--Penrose pseudoinverse |
|
|
53 | (5) |
|
|
58 | (8) |
|
|
60 | (1) |
|
2.4.2 Relationship to convolution operators |
|
|
61 | (5) |
|
|
66 | (2) |
|
|
68 | (9) |
|
2.6.1 Cayley graphs on abelian groups |
|
|
70 | (1) |
|
2.6.2 Cayley graphs for non-abelian groups |
|
|
71 | (6) |
|
2.7 Additive Cayley graphs |
|
|
77 | (9) |
|
2.7.1 Cayley graphs and p-ary functions |
|
|
80 | (6) |
|
2.8 Graphs of group quotients |
|
|
86 | (11) |
|
2.8.1 Example of the Biggs--Smith graph |
|
|
94 | (3) |
|
|
97 | (48) |
|
|
97 | (1) |
|
|
97 | (2) |
|
3.3 Harmonic morphisms on a graph |
|
|
99 | (22) |
|
3.3.1 Matrix formulation of graph morphisms |
|
|
102 | (4) |
|
3.3.2 Identities for harmonic morphisms |
|
|
106 | (12) |
|
|
118 | (1) |
|
3.3.4 Graph spectra for harmonic morphisms |
|
|
119 | (1) |
|
3.3.5 Riemann--Hurwitz formula |
|
|
120 | (1) |
|
3.4 G-equivariant covering graphs |
|
|
121 | (5) |
|
3.5 A Riemann--Roch theorem on graphs |
|
|
126 | (9) |
|
3.5.1 Divisors and the Jacobian |
|
|
126 | (1) |
|
3.5.2 Linear systems on graphs |
|
|
127 | (1) |
|
3.5.3 Non-special divisors |
|
|
128 | (4) |
|
3.5.4 The Riemann--Roch theorem for graphs |
|
|
132 | (3) |
|
3.6 Induced maps on divisors |
|
|
135 | (10) |
|
3.6.1 The pushforward map |
|
|
136 | (1) |
|
|
137 | (1) |
|
3.6.3 Dimensions of linear systems and harmonic morphisms |
|
|
138 | (7) |
|
|
145 | (64) |
|
|
145 | (1) |
|
|
145 | (3) |
|
|
146 | (2) |
|
4.3 Configurations on graphs |
|
|
148 | (13) |
|
4.3.1 Legal configurations |
|
|
148 | (2) |
|
4.3.2 Chip-firing and set-firing moves |
|
|
150 | (4) |
|
4.3.3 Stable, recurrent, and critical configurations |
|
|
154 | (2) |
|
4.3.4 Identifying critical configurations |
|
|
156 | (2) |
|
4.3.5 Reduced configurations |
|
|
158 | (3) |
|
4.4 Energy pairing on degree 0 configurations |
|
|
161 | (4) |
|
4.5 Equivalence classes of configurations |
|
|
165 | (4) |
|
4.6 Critical group of a graph |
|
|
169 | (8) |
|
4.6.1 The Jacobian and the Picard group |
|
|
170 | (1) |
|
4.6.2 Simple examples of critical groups |
|
|
170 | (1) |
|
4.6.3 The Smith normal form and invariant factors |
|
|
171 | (4) |
|
4.6.4 Energy pairing on the critical group |
|
|
175 | (2) |
|
4.7 Examples of critical groups |
|
|
177 | (10) |
|
|
178 | (1) |
|
|
178 | (1) |
|
|
179 | (1) |
|
|
180 | (1) |
|
4.7.5 Example of Clancy, Leake, and Payne |
|
|
180 | (1) |
|
|
181 | (5) |
|
4.7.7 Graphs with cyclic critical groups |
|
|
186 | (1) |
|
4.8 Harmonic morphisms and Jacobians |
|
|
187 | (8) |
|
4.8.1 Example: morphism from cube to K4 |
|
|
190 | (5) |
|
4.9 Dhar's burning algorithm |
|
|
195 | (11) |
|
4.9.1 Finding reduced configurations |
|
|
197 | (1) |
|
4.9.2 Finding a q-legal configuration equivalent to s |
|
|
198 | (1) |
|
4.9.3 Ordered Dhar's algorithm |
|
|
199 | (5) |
|
|
204 | (1) |
|
4.9.5 Computing the critical group of a graph |
|
|
205 | (1) |
|
4.10 Application: Biggs' cryptosystem |
|
|
206 | (3) |
|
|
209 | (36) |
|
|
210 | (2) |
|
|
212 | (2) |
|
|
214 | (2) |
|
|
216 | (1) |
|
|
216 | (2) |
|
|
218 | (2) |
|
|
220 | (3) |
|
|
223 | (2) |
|
|
225 | (1) |
|
|
225 | (2) |
|
|
227 | (2) |
|
|
229 | (3) |
|
|
232 | (1) |
|
|
232 | (3) |
|
5.15 Hoffman-Singleton graph |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
236 | (2) |
|
|
238 | (3) |
|
|
241 | (1) |
|
|
241 | (4) |
|
6 Cayley Graphs of Bent Functions and Codes |
|
|
245 | (58) |
|
|
245 | (1) |
|
|
246 | (1) |
|
|
246 | (6) |
|
6.4 Duals and regularity of bent functions |
|
|
252 | (3) |
|
6.5 Partial difference sets |
|
|
255 | (2) |
|
6.5.1 Dillon's correspondence |
|
|
257 | (1) |
|
|
257 | (6) |
|
6.6.1 Strongly regular graphs |
|
|
259 | (2) |
|
6.6.2 Cayley graphs of bent functions |
|
|
261 | (2) |
|
|
263 | (5) |
|
6.7.1 Adjacency rings (Bose--Mesner algebras) |
|
|
263 | (1) |
|
|
264 | (4) |
|
6.8 The matrix-walk theorem |
|
|
268 | (1) |
|
6.9 Weighted partial difference sets |
|
|
269 | (4) |
|
6.10 Weighted Cayley graphs |
|
|
273 | (9) |
|
6.10.1 Edge-weighted strongly regular graphs |
|
|
273 | (1) |
|
6.10.2 Weighted partial difference sets |
|
|
273 | (2) |
|
6.10.3 Level curves of p-ary functions |
|
|
275 | (1) |
|
6.10.4 Intersection numbers |
|
|
275 | (3) |
|
6.10.5 Cayley graphs of p-ary functions |
|
|
278 | (2) |
|
6.10.6 Group actions on bent functions |
|
|
280 | (2) |
|
6.11 Fourier transforms and graph spectra |
|
|
282 | (2) |
|
6.11.1 Connected components of Cayley graphs |
|
|
283 | (1) |
|
6.12 Algebraic normal form |
|
|
284 | (2) |
|
6.13 Examples of bent functions |
|
|
286 | (8) |
|
6.13.1 Bent functions GF(3)2 → GF(3) |
|
|
286 | (6) |
|
6.13.2 Bent functions GF(3)3 → GF(3) |
|
|
292 | (1) |
|
6.13.3 Bent functions GF(5)2 → GF(5) |
|
|
292 | (2) |
|
6.14 Examples of Cayley graphs |
|
|
294 | (5) |
|
6.15 Cayley graphs of linear codes |
|
|
299 | (1) |
|
6.16 Analogs and questions |
|
|
300 | (2) |
|
|
302 | (1) |
Appendix A: Selected Answers |
|
303 | (6) |
Bibliography |
|
309 | (6) |
Index |
|
315 | (8) |
Applied and Numerical Harmonic Analysis |
|
323 | |