Atjaunināt sīkdatņu piekrišanu

Aero Engine Combustor Casing: Experimental Design and Fatigue Studies [Hardback]

(Defence Institute of Advanced Technology (DIAT), Pune, India.),
  • Formāts: Hardback, 156 pages, height x width: 234x156 mm, weight: 453 g, 39 Line drawings, color; 17 Line drawings, black and white; 31 Halftones, color; 8 Halftones, black and white
  • Izdošanas datums: 09-Jun-2017
  • Izdevniecība: CRC Press
  • ISBN-10: 1138032832
  • ISBN-13: 9781138032835
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 249,78 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 156 pages, height x width: 234x156 mm, weight: 453 g, 39 Line drawings, color; 17 Line drawings, black and white; 31 Halftones, color; 8 Halftones, black and white
  • Izdošanas datums: 09-Jun-2017
  • Izdevniecība: CRC Press
  • ISBN-10: 1138032832
  • ISBN-13: 9781138032835
Citas grāmatas par šo tēmu:

The book is focused on theoretical and experimental investigation aimed at detecting andselecting proper information related to the fundamental aspect of combustion casing design,performance and life evaluation parameters. A rational approach has been adopted to the analysis domain underlying the complexities of the process.

Preface xi
Authors xiii
1 Introduction
1(22)
1.1 Background and Motivation
1(1)
1.2 Outline of this Book
2(2)
1.3 Initial Phase of Aero Engine Development
4(2)
1.4 Working Principle of Aero Gas Turbine Engines
6(1)
1.5 Critical Components of an Aero Engine
7(1)
1.6 Aero Engine Compressor
7(3)
1.7 Aero Engine Combustion Chamber
10(1)
1.8 Aero Engine Turbine
10(2)
1.9 Aero Engine Propelling Nozzle
12(2)
1.10 Design Philosophy of an Aero Engine Combustion Chamber
14(1)
1.11 Types of Combustion Chamber in Aero Engines
15(2)
1.11.1 Multiple Combustion Chambers
15(1)
1.11.2 Tubo-Annular Combustion Chamber
16(1)
1.11.3 Annular Combustion Chamber
16(1)
1.12 Complexities in Combustion Chamber Design
17(2)
1.13 Materials Used for Combustion Chamber
19(1)
1.14 Significant Contributions
20(1)
1.15 Summary
21(2)
2 Fatigue Design Philosophy of an Aero Engine Combustor Casing
23(30)
2.1 Introduction
23(1)
2.2 Combustion Chamber Design
23(2)
2.3 Fatigue Failure in Aero Engines
25(4)
2.4 Fatigue Cycle Counting Methods
29(5)
2.5 Fatigue Life Evaluation Methods
34(3)
2.6 Fatigue Damage Assessment
37(2)
2.7 Nondestructive Testing Methods
39(10)
2.7.1 Radiography Inspection
40(2)
2.7.2 Magnetic Particle Inspection
42(2)
2.7.3 Dye Penetrant Inspection
44(1)
2.7.4 Ultrasonic Inspection
45(2)
2.7.5 Eddy Current and Electromagnetic Inspection
47(2)
2.8 Summary of the Design Philosophy
49(1)
2.9 Important Design Considerations for Combustor Casing
50(1)
2.10 Summary
51(2)
3 Development of Test Facility and Test Setup
53(16)
3.1 Introduction
53(2)
3.2 Airworthiness and Certification
55(1)
3.3 Description of the Test Facility and Its Subsystems
56(4)
3.3.1 Hydraulic Power Supply
57(1)
3.3.2 Servo Valve with Manifold
58(1)
3.3.3 Safety Relief Valve
59(1)
3.3.4 Servo Controller
59(1)
3.3.5 Pressure Transducer
59(1)
3.4 Integration of the Subsystems
60(1)
3.5 Design and Manufacturing of Adaptors
61(7)
3.5.1 Bottom Fixing Plate
62(1)
3.5.2 Bottom Sealing Drum
62(1)
3.5.3 Inner Bottom Fixing Plate
63(1)
3.5.4 Special Tie Rod
64(1)
3.5.5 Top Sealing Plate
65(1)
3.5.6 Top Fixing Plate
65(1)
3.5.7 Top Support Plate
65(1)
3.5.8 Top Holding Plate
66(1)
3.5.9 Special Studs
67(1)
3.5.10 Seals
68(1)
3.6 Summary
68(1)
4 Manufacturing of an Aero Engine Combustor Casing, the Experimental Evaluation of Its Fatigue Life, and Correlation with Numerical Results
69(32)
4.1 Introduction
69(1)
4.2 Manufacturing Method of the Combustor Casing
70(5)
4.2.1 Metal Spinning Process
70(1)
4.2.1.1 Advantages of the Metal Spinning Process
71(1)
4.2.1.2 Disadvantages of Metal Spinning Process
72(1)
4.2.2 Electron Beam Welding Method
72(2)
4.2.3 Tungsten Inert Gas Welding Method
74(1)
4.3 Configuration of the Combustor Casing
75(1)
4.4 Experimental Evaluation of Fatigue Life
76(5)
4.4.1 Instrumentation
77(2)
4.4.2 Inspection Methodology
79(2)
4.5 Mechanical Properties of Combustor Casing Material
81(1)
4.6 Numerical Analysis of the Combustor Casing
82(7)
4.6.1 Details of the Finite Element Model
83(1)
4.6.2 Finite Element Model Quality Parameters
84(1)
4.6.3 Boundary Conditions
85(1)
4.6.4 Load
85(1)
4.6.5 Pressure Load
85(1)
4.6.6 Thermal Load
85(2)
4.6.7 Nusselt Equation
87(1)
4.6.8 Dittus Boelter Equation
87(2)
4.7 Numerical Analysis of the Igniter Boss and Its Correlation with Experimental Data
89(9)
4.8 Results and Discussions
98(1)
4.9 Summary
98(3)
5 Reassessment of Fatigue Life of the Modified Combustor Casing
101(12)
5.1 Introduction
101(1)
5.2 Modified Manufacturing Methodology
101(5)
5.2.1 Forging Process: Benefits and Drawbacks
101(5)
5.3 Instrumentation of the Modified Combustor Casing
106(1)
5.4 Assembly and Trial Run
106(3)
5.5 Testing
109(1)
5.6 Results and Discussion
109(1)
5.7 Summary
110(3)
6 Safety Test on Modified Combustor Casing
113(6)
6.1 Introduction
113(1)
6.2 Test Component Details
114(1)
6.3 Instrumentation and Testing
115(2)
6.4 Results and Discussion
117(1)
6.5 Summary
118(1)
7 Effect of Fatigue on the Proof Strength of an Aero Engine Combustor Casing
119(20)
7.1 Introduction
119(1)
7.2 Metallographic Techniques in Failure Analysis
120(6)
7.2.1 Stereo Zoom Microscopy
121(1)
7.2.2 Scanning Electron Microscopy
121(4)
7.2.3 Optical Microscopy
125(1)
7.3 Details of the Test Component
126(1)
7.4 Experimental Procedure
127(1)
7.5 Observation
128(9)
7.5.1 Visual Observation
128(1)
7.5.2 Stereo Zoom Microscopy
128(1)
7.5.3 Scanning Electron Microscopy
129(1)
7.5.3.1 Fractography
129(2)
7.5.3.2 Energy Dispersive X-Ray Analysis
131(1)
7.5.4 Optical Microscopy
131(1)
7.5.5 Microhardness Measurement
131(6)
7.6 Discussions
137(1)
7.7 Summary
137(2)
8 Conclusions
139(4)
8.1 Certification and Acceptance of the Combustor Casing
139(1)
8.2 Specific Conclusions
139(1)
8.3 Scope for Further Work
140(3)
References 143(10)
Index 153
Sashi Kanta Panigrahi, Niranjan Sarangi