Atjaunināt sīkdatņu piekrišanu

Aerosols: Science and Technology [Hardback]

Edited by (Griffith University, Brisbane, Australia)
  • Formāts: Hardback, 492 pages, height x width x depth: 245x177x28 mm, weight: 1049 g
  • Izdošanas datums: 28-Jun-2010
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 352732660X
  • ISBN-13: 9783527326600
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 211,65 €*
  • * Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena
  • Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena.
  • Daudzums:
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 492 pages, height x width x depth: 245x177x28 mm, weight: 1049 g
  • Izdošanas datums: 28-Jun-2010
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 352732660X
  • ISBN-13: 9783527326600
Citas grāmatas par šo tēmu:
This self-contained handbook and ready reference examines aerosol science and technology in depth, providing a detailed insight into this progressive field. As such, it covers fundamental concepts, experimental methods, and a wide variety of applications, ranging from aerosol filtration to biological aerosols, and from the synthesis of carbon nanotubes to aerosol reactors.
Written by a host of internationally renowned experts in the field, this is an essential resource for chemists and engineers in the chemical and materials disciplines across multiple industries, as well as ideal supplementary reading in graduate level courses.
List of Contributors
xiii
List of Symbols
xvii
Introduction xxix
1 Introduction to Aerosols
1(42)
Alexey A. Lushnikov
1.1 Introduction
1(1)
1.2 Aerosol Phenomenology
2(4)
1.2.1 Basic Dimensionless Criteria
2(1)
1.2.1.1 Reynolds Number
2(1)
1.2.1.2 Stokes Number
2(1)
1.2.1.3 Knudsen Number
3(1)
1.2.1.4 Peclet Number
3(1)
1.2.1.5 Mie Number
3(1)
1.2.1.6 Coulomb Number
3(1)
1.2.2 Particle Size Distributions
4(1)
1.2.2.1 The Log-Normal Distribution
4(1)
1.2.2.2 Generalized Gamma Distribution
5(1)
1.3 Drag Force and Diffusivity
6(1)
1.4 Diffusion Charging of Aerosol Particles
7(4)
1.4.1 Flux Matching Exactly
8(1)
1.4.2 Flux Matching Approximately
9(1)
1.4.3 Charging of a Neutral Particle
9(1)
1.4.4 Recombination
10(1)
1.5 Fractal Aggregates
11(10)
1.5.1 Introduction
12(1)
1.5.2 Phenomenology of Fractals
13(1)
1.5.2.1 Fractal Dimension
13(1)
1.5.2.2 Correlation Function
14(1)
1.5.2.3 Distribution of Voids
14(1)
1.5.2.4 Phenomenology of Atmospheric FA
14(1)
1.5.3 Possible Sources of Fractal Particles
15(1)
1.5.3.1 Natural Sources
15(1)
1.5.3.2 Anthropogenic Sources
15(1)
1.5.4 Formation of Fractal Aggregates
16(1)
1.5.4.1 Growth by Condensation
16(1)
1.5.4.2 Growth by Coagulation
17(1)
1.5.4.3 Aerosol-Aerogel Transition
18(1)
1.5.5 Optics of Fractals
18(2)
1.5.6 Are Atmospheric Fractals Long-Lived?
20(1)
1.5.7 Concluding Remarks
21(1)
1.6 Coagulation
21(12)
1.6.1 Asymptotic Distributions in Coagulating Systems
23(3)
1.6.2 Gelation in Coagulating Systems
26(7)
1.7 Laser-Induced Aerosols
33(3)
1.7.1 Formation of Plasma Cloud
33(1)
1.7.1.1 Nucleation plus Condensational Growth
34(1)
1.7.1.2 Coagulation
34(1)
1.7.2 Laser-Induced Gelation
34(2)
1.8 Conclusion
36(7)
References
37(6)
Part I Aerosol Formation
43(160)
2 High-Temperature Aerosol Systems
45(20)
Arkadi Maisels
2.1 Introduction
45(1)
2.2 Main High-Temperature Processes for Aerosol Formation
45(5)
2.2.1 Flame Processes
47(2)
2.2.2 Hot-Wall Processes
49(1)
2.2.3 Plasma Processes
49(1)
2.2.4 Laser-Induced Processes
50(1)
2.2.5 Gas Dynamically Induced Particle Formation
50(1)
2.3 Basic Dynamic Processes in High-Temperature Aerosol Systems
50(9)
2.3.1 Nucleation
52(1)
2.3.2 Coagulation/Aggregation
52(3)
2.3.3 Surface Growth Due to Condensation
55(1)
2.3.4 Sintering
55(2)
2.3.5 Charging
57(2)
2.4 Particle Tailoring in High-Temperature Processes
59(6)
References
61(4)
3 Aerosol Synthesis of Single-Walled Carbon Nanotubes
65(26)
Albert G. Nasibulin
Sergey D. Shandakov
3.1 Introduction
65(5)
3.1.1 Carbon Nanotubes as Unique Aerosol Particles
65(3)
3.1.2 History and Perspectives of CNT Synthesis
68(2)
3.2 Aerosol-Unsupported Chemical Vapor Deposition Methods
70(4)
3.2.1 The HiPco Process
70(1)
3.2.2 Ferrocene-Based Method
71(2)
3.2.3 Hot-Wire Generator
73(1)
3.3 Control and Optimization of Aerosol Synthesis
74(4)
3.3.1 On-Line Monitoring of CNT Synthesis
74(2)
3.3.2 Individual CNTs and Bundle Separation
76(1)
3.3.3 CNT Property Control and Nanobud Production
76(2)
3.4 Carbon Nanotube Bundling and Growth Mechanisms
78(4)
3.4.1 Bundle Charging
78(2)
3.4.2 Growth Mechanism
80(2)
3.5 Integration of the Carbon Nanotubes
82(2)
3.6 Summary
84(7)
Acknowledgements
84(1)
References
84(7)
4 Condensation Evaporation, Nucleation
91(36)
Alexey A. Lushnikov
4.1 Introduction
91(1)
4.2 Condensation
92(2)
4.2.1 Continuum Transport
93(1)
4.2.2 Free-Molecule Transport
93(1)
4.3 Condensation in the Transition Regime
94(3)
4.3.1 Flux-Matching Theory
95(1)
4.3.2 Approximations
96(1)
4.3.2.1 The Fuchs Approximation
96(1)
4.3.2.2 The Fuchs-Sutugin Approximation
96(1)
4.3.2.3 The Lushnikov-Kulmala Approximation
96(1)
4.3.3 More Sophisticated Approaches
97(1)
4.4 Evaporation
97(2)
4.5 Uptake
99(5)
4.5.1 Getting Started
100(1)
4.5.2 Hierarchy of Times
101(1)
4.5.3 Diffusion in the Gas Phase
101(2)
4.5.4 Crossing the Interface
103(1)
4.5.5 Transport and Reaction in the Liquid Phase
103(1)
4.6 Balancing Fluxes
104(4)
4.6.1 No Chemical Interaction
104(2)
4.6.2 Second-Order Kinetics
106(2)
4.7 Nucleation
108(6)
4.7.1 The Szilard-Farkas Scheme
109(1)
4.7.2 Condensation and Evaporation Rates
110(1)
4.7.3 Thermodynamically Controlled Nucleation
111(1)
4.7.4 Kinetically Controlled Nucleation
111(2)
4.7.5 Fluctuation-Controlled Nucleation
113(1)
4.8 Nucleation-Controlled Processes
114(6)
4.8.1 Nucleation Bursts
114(1)
4.8.2 Nucleation-Controlled Condensation
115(2)
4.8.3 Nucleation-Controlled Growth by Coagulation
117(2)
4.8.4 Nucleation Bursts in the Atmosphere
119(1)
4.9 Conclusion
120(7)
References
122(5)
5 Combustion-Derived Carbonaceous Aerosols (Soot) in the Atmosphere: Water Interaction and Climate Effects
127(32)
Olga B. Popovicheva
5.1 Black Carbon Aerosols in the Atmosphere: Emissions and Climate Effects
127(5)
5.2 Physico-Chemical Properties of Black Carbon Aerosols
132(8)
5.2.1 General Characteristics
133(4)
5.2.2 Key Properties Responsible for Interaction with Water
137(3)
5.3 Water Uptake by Black Carbons
140(12)
5.3.1 Fundamentals of Water Interaction with Black Carbons
140(3)
5.3.2 Concept of Quantification
143(1)
5.3.3 Laboratory Approach for Water Uptake Measurements
144(2)
5.3.4 Quantification of Water Uptake
146(1)
5.3.4.1 Hydrophobic Soot
146(2)
5.3.4.2 Hydrophilic Soot
148(3)
5.3.4.3 Hygroscopic Soot
151(1)
5.4 Conclusions
152(7)
Acknowledgements
153(1)
References
153(6)
6 Radioactive Aerosols - Chernobyl Nuclear Power Plant Case Study
159(44)
Boris I. Ogorodnikov
6.1 Introduction
159(5)
6.2 Environmental Aerosols
164(41)
6.2.1 Dynamics of Release of Radioactive Aerosols from Chernobyl
164(2)
6.2.2 Transport of Radioactive Clouds in the Northern Hemisphere
166(2)
6.2.3 Observation of Radioactive Aerosols above Chernobyl
168(3)
6.2.4 Observations of Radioactive Aerosols in the Territory around Chernobyl
171(12)
6.2.5 Dispersity of Aerosol Carriers of Radionuclides
183(2)
6.3 Aerosols inside the Vicinity of the "Shelter" Building
185(18)
6.3.1 Devices and Methods to Control Radioactive Aerosols in the "Shelter"
185(1)
6.3.2 Control of Discharge from the "Shelter"
185(1)
6.3.3 Well-Boring in Search of Remaining Nuclear Fuel
186(2)
6.3.4 Clearance of the Turbine Island of the Fourth Power Generating Unit
188(1)
6.3.5 Strengthening of the Seats of Beams on the Roof of the "Shelter"
189(2)
6.3.6 Aerosols Generated during Fires in the "Shelter"
191(1)
6.3.7 Dust Control System
192(1)
6.3.8 Control of the Release of Radioactive Aerosols through the "Bypass" System
192(3)
6.3.9 Radon, Thoron and their Daughter Products in the "Shelter"
195(2)
References
197(6)
Part II Aerosol Measurement and Characterization
203(70)
7 Applications of Optical Methods for Micrometer and Submicrometer Particle Measurements
205(36)
Aladar Czitrovszky
7.1 Introduction
205(1)
7.2 Optical Methods in Particle Measurements
206(2)
7.3 Short Overview of Light Scattering Theories
208(5)
7.4 Classification of Optical Instruments for Particle Measurements
213(2)
7.4.1 Multi-Particle Instruments
213(1)
7.4.2 Single-Particle Instruments
214(1)
7.5 Development of Airborne and Liquid-borne Particle Counters and Sizers
215(10)
7.5.1 Development of Airborne Particle Counters
216(6)
7.5.2 Development of Liquid-borne Particle Counters
222(3)
7.6 New Methods Used to Characterize the Electrical Charge and Density of the Particles
225(2)
7.7 Aerosol Analyzers for Measurement of the Complex Refractive Index of Aerosol Particles
227(2)
7.8 Comparison of Commercially Available Instruments and Analysis of the Trends of Further Developments
229(4)
7.8.1 Portable Particle Counters
230(1)
7.8.2 Remote Particle Counters
230(3)
7.8.3 Multi-Particle Counters
233(1)
7.8.4 Handheld Particle Counters
233(1)
7.9 Conclusions
233(8)
References
234(7)
8 The Inverse Problem and Aerosol Measurements
241(32)
Valery A. Zagaynov
8.1 Introduction
241(2)
8.2 Forms of Representation of Particle Size Distribution
243(2)
8.3 Differential and Integral Measurements
245(1)
8.4 Differential Mobility Analysis
246(6)
8.5 Diffusion Aerosol Spectrometry
252(16)
8.5.1 Raw Measurement Results and their Development - Parameterization of Particle Size Distribution
254(2)
8.5.2 Fitting of Penetration Curves
256(1)
8.5.3 Transformation of the Integral Equation into Nonlinear Algebraic Form
257(2)
8.5.4 Effect of Experimental Errors on Reconstruction of Particle Size Distribution
259(2)
8.5.5 Reconstruction of Bimodal Distributions
261(3)
8.5.6 Mathematical Approach to Reconstruct Bimodal Distribution from Particle Penetration Data
264(2)
8.5.7 Solution of the Inverse Problem by Regularization Method
266(2)
8.6 Conclusions
268(5)
References
269(4)
Part III Aerosol Removal
273(70)
9 History of Development and Present State of Polymeric Fine-Fiber Unwoven Petryanov Filter Materials for Aerosol Entrapment
275(8)
Bogdan F. Sadovsky
References
282(1)
10 Deposition of Aerosol Nanoparticles in Model Fibrous Filters
283(32)
Vasily A. Kirsch
Alexander A. Kirsch
10.1 Introduction
283(4)
10.2 Results of Numerical Modeling of Nanoparticle Deposition in Two-Dimensional Model Filters
287(15)
10.2.1 Fiber Collection Efficiency at High Peclet Number: Cell Model Approach
287(2)
10.2.2 Fiber Collection Efficiency at Low Peclet Number: Row of Fibers Approach
289(3)
10.2.3 Deposition of Nanoparticles upon Ultra-Fine Fibers
292(2)
10.2.4 Deposition of Nanoparticles on Fibers with Non-Circular Cross-Section
294(4)
10.2.5 Deposition of Nanoparticles on Porous and Composite Fibers
298(4)
10.3 Penetration of Nanoparticles through Wire Screen Diffusion Batteries
302(8)
10.3.1 Deposition of Nanoparticles in Three-Dimensional Model Filters
302(2)
10.3.2 Theory of Particle Deposition on Screens with Square Mesh
304(1)
10.3.3 Comparison with Experiment
305(5)
10.4 Conclusion
310(5)
Acknowledgements
311(1)
References
311(4)
11 Filtration of Liquid and Solid Aerosols on Liquid-Coated Filters
315(28)
Igor E. Agranovski
11.1 Introduction
315(1)
11.2 Wettable Filtration Materials
316(11)
11.2.1 Theoretical Aspects
318(2)
11.2.2 Practical Aspects
320(6)
11.2.3 Inactivation of Bioaerosols on Fibers Coated by a Disinfectant
326(1)
11.3 Non-Wettable Filtration Materials
327(3)
11.3.1 Theoretical Aspects
327(3)
11.3.2 Practical Aspects of Non-Wettable Filter Design
330(1)
11.4 Filtration on a Porous Medium Submerged into a Liquid
330(13)
11.4.1 Theoretical Approach
330(7)
11.4.2 Application of the Technique for Viable Bioaerosol Monitoring
337(3)
References
340(3)
Part IV Atmospheric and Biological Aerosols
343(112)
12 Atmospheric Aerosols
345(34)
Lev S. Ivlev
12.1 General Concepts
345(3)
12.2 Atmospheric Aerosols of Different Nature
348(15)
12.2.1 Soil Aerosols
348(3)
12.2.2 Marine Aerosols
351(3)
12.2.3 Volcanic Aerosols
354(4)
12.2.4 Aerosols In situ - Secondary Aerosols
358(1)
12.2.4.1 Photochemical Oxidation - Heterogeneous Reactions
359(1)
12.2.4.2 Catalytic Oxidation in the Presence of Heavy Metals
360(1)
12.2.4.3 Reaction of Ammonia with Sulfur Dioxide in the Presence of Water Droplets (Reaction of Cloud Droplets)
360(1)
12.2.5 Biogenic Small Gas Compounds and Aerosols
360(3)
12.3 Temporal and Dimensional Structure of Atmospheric Aerosols
363(8)
12.3.1 Aerosols in the Troposphere
363(1)
12.3.1.1 Terrigenous Elements
363(1)
12.3.1.2 The Group of Ions
363(8)
12.4 Aerosols in the Stratosphere
371(8)
References
377(2)
13 Biological Aerosols
379(28)
Sergey A. Grinshpun
13.1 Introduction
379(1)
13.2 History of Bioaerosol Research
379(2)
13.3 Main Definitions and Types of Bioaerosol Particles
381(2)
13.4 Sources of Biological Particles and their Aerosolization
383(1)
13.5 Sampling and Collection
384(7)
13.5.1 Impaction
386(2)
13.5.2 Collection into Liquid
388(1)
13.5.3 Filter Collection
389(1)
13.5.4 Gravitational Settling
390(1)
13.5.5 Electrostatic Precipitation
390(1)
13.6 Analysis
391(2)
13.7 Real-Time Measurement of Bioaerosols
393(1)
13.8 Purification of Indoor Air Contaminated with Bioaerosol Particles and Respiratory Protection
393(14)
13.8.1 Air Purification
393(3)
13.8.2 Respiratory Protection
396(2)
References
398(9)
14 Atmospheric Bioaerosols
407(48)
Aleksandr S. Safatov
Galina A. Buryak
Irina S. Andreeva
Sergei E. Olkin
Irina K. Reznikova
Aleksandr N. Sergeev
Boris D. Belan
Mikhail V. Panchenko
14.1 Introduction
407(1)
14.2 Methods of Atmospheric Bioaerosol Research
408(13)
14.2.1 Methods and Equipment for Atmospheric Bioaerosol Sampling
409(2)
14.2.2 Methods to Analyze the Chemical Composition of Atmospheric Bioaerosols and their Morphology
411(5)
14.2.3 Methods Used to Detect and Characterize Microorganisms in Atmospheric Bioaerosols
416(5)
14.3 Atmospheric Bioaerosol Studies
421(25)
14.3.1 Time Variation of Concentrations and Composition of Atmospheric Bioaerosol Components
421(11)
14.3.2 Spatial Variation of the Concentrations and Composition of Atmospheric Bioaerosol Components
432(4)
14.3.3 Possible Sources of Atmospheric Bioaerosols and their Transfer in the Atmosphere
436(2)
14.3.4 The Use of Snow Cover Samples to Analyze Atmospheric Bioaerosols
438(4)
14.3.5 Potential Danger of Atmospheric Bioaerosols for Humans and Animals
442(4)
14.4 Conclusion
446(9)
References
448(7)
Index 455
Prof. Agranovski is a research scientist with 24 years experience in aerosol science and nanotechnology and their applications in design and implementation of air pollution control and monitoring technologies. He has published more than 120 papers and has 5 patents to his name. He worked as a consultant for 49 companies worldwide and developed more than 30 new technologies. Prof. Agranovski is an Editor of CLEAN-Soil, Air, Water Journal. During his career, he worked as visiting professor at a number of universities in various countries including Japan, Russia, France, USA, UK, Hong Kong, Korea and many others.