Atjaunināt sīkdatņu piekrišanu

E-grāmata: Ahmes' Legacy: Puzzles and the Mathematical Mind

  • Formāts: EPUB+DRM
  • Sērija : Mathematics in Mind
  • Izdošanas datums: 11-Aug-2018
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319932545
  • Formāts - EPUB+DRM
  • Cena: 94,58 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Mathematics in Mind
  • Izdošanas datums: 11-Aug-2018
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319932545

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book looks at classic puzzles from the perspective of their structures and what they tell us about the brain. It uses the work on the neuroscience of mathematics from Dehaene, Butterworth, Lakoff, Núñez, and many others as a lens to understand the ways in which puzzles reflect imaginative processes blended with rational ones. The book is not about recreational or puzzle-based mathematics in and of itself but rather about what the classic puzzles tell us about the mathematical imagination and its impact on the discipline. It delves into the history of classic math puzzles, deconstructing their raison d’être and describing their psychological features, so that their nature can be fleshed out in order to help understand the mathematical mind.

This volume is the first monographic treatment of the psychological nature of puzzles in mathematics. With its user-friendly technical level of discussion, it is of interest to both general readers and those who engage in the disciplines of mathematics, psychology, neuroscience, and/or anthropology. It is also ideal as a textbook source for courses in recreational mathematics, or as reference material in introductory college math courses. 

Recenzijas

This book, however, focuses almost exclusively on puzzles within recreational mathematics, and surveys a wide variety of them. The books title comes from the Ahmes Papyrus (also called the Rhind Papyrus), that contains some of the oldest known puzzles. One of the peculiarities of the problem-puzzle distinction is that is it time-dependent, because we develop new standard methods from working on particular puzzles. (Allen Stenger, MAA Reviews, January, 25, 2019)









1 Puzzles and Mathematics
1(44)
Problems, Puzzles, and Games
2(10)
The Ahmes Papyrus
12(5)
Puzzles in Mathematics
17(13)
Recreational Mathematics
30(8)
A Cognitive Flow Model
38(7)
2 An Archetype Theory of Puzzles
45(34)
Alcuin's River-Crossing Puzzles
46(5)
Ibn Khallikan's Chess Puzzle
51(2)
The Tower of Hanoi Puzzle
53(3)
The Josephus Problem
56(1)
The Aha, Gotcha, and Eureka Effects
57(9)
Magic Squares
66(8)
Mazes
74(3)
Archetype Theory
77(2)
3 Puzzles and Discovery
79(26)
Fibonacci's Rabbit Puzzle
80(5)
Euler's Konigsberg Bridges Puzzle
85(5)
The Birthday Problem
90(3)
Paradoxes
93(7)
Discovery
100(5)
4 Puzzles and Spatial Reasoning
105(22)
Tangrams
106(4)
The Rubik's Cube
110(1)
Flatland
111(4)
Loyd's Optical Illusion Puzzles
115(2)
The Four-Color Problem
117(3)
The Assembly Archetype
120(3)
Spatial Reasoning
123(4)
5 The Mathematical Mind
127(24)
The Traveling Salesman Problem
129(3)
The Monty Hall Problem
132(2)
Logic Puzzles
134(2)
Mathematical Thinking
136(8)
Ahmes' Legacy
144(7)
References 151(10)
Index 161